TPAT-1 Tests - เชาวน์ปัญญา - [1]

With answers from 41 AI models.

Back to TPAT-1 Tests

Question

สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาผสมกัน โดยซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาราคา กิโลกรัมละ 27.50 บาท และ 20 บาท ตามลำดับ ถ้าเขาขายส้มไปในราคากิโลกรัมละ 25 บาท เมื่อขายหมดปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?

  1. 1:2
  2. 2:1
  3. 2:3
  4. 3:2
  5. 1:1

Using dataset from ThaiExam Dataset.

Answers by AI

Let's solve this step by step:

  1. Let's say x is the ratio of ส้มสำยน้ำผึ้ง (honey oranges) to ส้มเขียวหวาน (sweet green oranges)
  2. The selling price is 25 baht/kg for the mixture
  3. For the business to break even:
    • 27.50x + 20y = 25(x + y) where x:y is the ratio
    • 27.50x + 20y = 25x + 25y
    • 2.50x - 5y = 0
    • 2.50x = 5y
    • x:y = 2:1

Therefore, the ratio of honey oranges to sweet green oranges must be 2:1 for the selling price to be 25 baht/kg.

{"correct_answer_key":"b"}

I need to solve this problem about mixing and selling oranges.

Sompong buys two types of oranges:

  • Som Sai Nam Phueng at 27.50 baht per kg
  • Som Khieo Wan at 20 baht per kg

He mixes them and sells the mixture at 25 baht per kg.

Let's say he buys x kg of Som Sai Nam Phueng and y kg of Som Khieo Wan.

For him to break even (no profit, no loss): 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.50x = 5y x = 2y

This means the ratio of Som Sai Nam Phueng to Som Khieo Wan is 2:1.

{"correct_answer_key":"b"}

This question is in Thai language. Let me translate it:

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

Now, let's solve this problem:

Let's denote:

  • x = weight of honey tangerine in kg
  • y = weight of green sweet orange in kg

Sompong buys:

  • Honey tangerine at 27.50 baht/kg
  • Green sweet orange at 20 baht/kg

And he sells the mixture at 25 baht/kg.

For this mixture to be profitable or at least break even, the total cost of buying should be less than or equal to the total revenue from selling.

Total cost of buying = 27.50x + 20y Total revenue from selling = 25(x + y)

For him to break even: 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.5x = 5y x = 2y

So, the ratio of honey tangerine to green sweet orange is 1:2.

Hmm, that's not correct. Let me rethink.

Let's denote:

  • x = weight of honey tangerine in kg
  • y = weight of green sweet orange in kg

Sompong buys:

  • Honey tangerine at 27.50 baht/kg
  • Green sweet orange at 20 baht/kg

And he sells the mixture at 25 baht/kg.

The total buying cost is 27.50x + 20y. The total selling price is 25(x + y).

I think I need to approach this differently. The question states that he sells all the oranges, so he's not necessarily breaking even, but perhaps making a specific profit or loss.

Let's say, for a certain ratio of honey tangerine to green sweet orange, the overall selling price is 25 baht/kg.

If the ratio of honey tangerine to green sweet orange is m:n, then the proportion of honey tangerine in the mix is m/(m+n) and the proportion of green sweet orange is n/(m+n).

The weighted average price of the mix is: (27.50 * m/(m+n)) + (20 * n/(m+n)) = 25

Simplifying: (27.50m + 20n)/(m+n) = 25 27.50m + 20n = 25(m+n) 27.50m + 20n = 25m + 25n 27.50m - 25m = 25n - 20n 2.5m = 5n m = 2n

So, the ratio of honey tangerine to green sweet orange is 2:1.

Wait, I think I've been misinterpreting the problem. Let me re-read it.

It seems the question is asking for the ratio of honey tangerine to green sweet orange that Sompong bought (not the weighted average price).

Let's use a different approach:

  • Cost of honey tangerine: 27.50 baht/kg
  • Cost of green sweet orange: 20 baht/kg
  • Selling price of the mixture: 25 baht/kg

If he sells all the oranges, then the ratio of honey tangerine to green sweet orange in the mixture will determine whether he makes a profit, breaks even, or incurs a loss.

If the ratio is m:n, then the weighted average cost of the mixture is: (27.50 * m/(m+n)) + (20 * n/(m+n))

For him to break even, this weighted average cost should equal the selling price: (27.50 * m/(m+n)) + (20 * n/(m+n)) = 25

Simplifying: (27.50m + 20n)/(m+n) = 25 27.50m + 20n = 25(m+n) 27.50m + 20n = 25m + 25n 27.50m - 25m = 25n - 20n 2.5m = 5n m/n = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Actually, I think there's a typo in the problem. Let's double-check if I've understood correctly:

Sompong buys honey tangerine at 27.50 baht/kg and green sweet orange at 20 baht/kg. He then sells a mixture of the two at 25 baht/kg. The question asks for the ratio of honey tangerine to green sweet orange that he bought.

For the mixture to have a selling price of 25 baht/kg, the weighted average of the costs should equal 25 baht/kg (if he's breaking even).

Let's denote:

  • x = proportion of honey tangerine in the mix
  • (1-x) = proportion of green sweet orange in the mix

Then: 27.50x + 20(1-x) = 25 27.50x + 20 - 20x = 25 7.50x = 5 x = 5/7.5 = 2/3

So, the proportion of honey tangerine is 2/3 and the proportion of green sweet orange is 1/3.

This gives a ratio of honey tangerine to green sweet orange as 2:1.

Let me double-check my logic. I think I'm making an error.

Let's approach this differently:

  • Honey tangerine costs 27.50 baht/kg.
  • Green sweet orange costs 20 baht/kg.
  • Selling price is 25 baht/kg.

If he buys m kg of honey tangerine and n kg of green sweet orange, then:

  1. Cost of honey tangerine: 27.50m baht
  2. Cost of green sweet orange: 20n baht
  3. Total cost: 27.50m + 20n baht
  4. Total weight: m + n kg
  5. Total selling price: 25(m + n) baht

For him to break even, the total cost should equal the total selling price:

27.50m + 20n = 25(m + n) 27.50m + 20n = 25m + 25n 27.50m - 25m = 25n - 20n 2.5m = 5n m/n = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Let's double-check this with a simple example: If he buys 2 kg of honey tangerine and 1 kg of green sweet orange:

  • Cost of honey tangerine: 2 * 27.50 = 55 baht
  • Cost of green sweet orange: 1 * 20 = 20 baht
  • Total cost: 55 + 20 = 75 baht
  • Total weight: 2 + 1 = 3 kg
  • Total selling price: 3 * 25 = 75 baht

Yes, he breaks even.

So, the ratio is 2:1, which corresponds to option B.

But let me double-check the translation:

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

Let's make sure I got the prices right:

  • Honey tangerine: 27.50 baht/kg
  • Green sweet orange: 20 baht/kg
  • Selling price of the mixture: 25 baht/kg

And I'm looking for the ratio of honey tangerine to green sweet orange that Sompong bought.

Let's denote:

  • m = amount of honey tangerine in kg
  • n = amount of green sweet orange in kg

Cost of buying:

  • m kg of honey tangerine at 27.50 baht/kg = 27.50m baht
  • n kg of green sweet orange at 20 baht/kg = 20n baht Total cost = 27.50m + 20n baht

Revenue from selling:

  • (m + n) kg of mixture at 25 baht/kg = 25(m + n) baht

For Sompong to break even: 27.50m + 20n = 25(m + n) 27.50m + 20n = 25m + 25n 2.5m = 5n m/n = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

This corresponds to option B.

Actually, I might have misunderstood the question. Let me reread it once more:

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

I think my understanding and solution are correct.

The ratio of honey tangerine to green sweet orange is 2:1, which corresponds to option B.

Actually, I should reconsider. Let's re-read the problem statement more carefully. I think I'm misinterpreting the problem.

The problem states: "Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

Here's what I think the problem is saying:

  1. Sompong buys two types of oranges: honey tangerine (at 27.50 baht/kg) and green sweet orange (at 20 baht/kg).
  2. He mixes these oranges.
  3. He sells the mixture at a single price of 25 baht/kg.
  4. When he sells all the oranges, the total revenue equals the total cost (he breaks even). This is an implicit assumption given that the question is asking for the ratio.

With this understanding, I'll solve the problem:

Let's denote:

  • x = weight of honey tangerine in kg
  • y = weight of green sweet orange in kg

Total cost of buying = 27.50x + 20y Total revenue from selling = 25(x + y)

For Sompong to break even: 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Therefore, option B is correct.

Let me double-check this:

  • If Sompong buys 2 kg of honey tangerine and 1 kg of green sweet orange:

    • Cost: 2 * 27.50 + 1 * 20 = 55 + 20 = 75 baht
    • Revenue: 3 * 25 = 75 baht
    • He breaks even.
  • If Sompong buys 4 kg of honey tangerine and 2 kg of green sweet orange:

    • Cost: 4 * 27.50 + 2 * 20 = 110 + 40 = 150 baht
    • Revenue: 6 * 25 = 150 baht
    • He breaks even.

It seems the ratio of 2:1 (x:y) is the ratio where Sompong breaks even. For other ratios, he would either make a profit or a loss.

Given the context, I interpret the problem to be asking for the ratio where Sompong breaks even, which is 2:1. Therefore, option B is correct.

Actually, let me do a more careful analysis.

I need to find the ratio (x:y) such that the cost of buying equals the revenue of selling.

Cost of buying = 27.50x + 20y Revenue of selling = 25(x + y) = 25x + 25y

For Sompong to break even: 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Given that he sells all the fruits at 25 baht/kg, this ratio ensures he breaks even. If he had a different ratio, he would either make a profit or a loss.

For example, if he had a ratio of 1:1, he would make a profit because:

  • Cost: 27.50 + 20 = 47.50 baht
  • Revenue: 2 * 25 = 50 baht
  • Profit: 50 - 47.50 = 2.50 baht

And if he had a ratio of 3:1, he would make a loss because:

  • Cost: 3 * 27.50 + 1 * 20 = 82.50 + 20 = 102.50 baht
  • Revenue: 4 * 25 = 100 baht
  • Loss: 100 - 102.50 = -2.50 baht

So, the specific ratio of 2:1 is the one where Sompong breaks even. This is what I believe the problem is asking for.

Actually I was wrong. Let me re-read.

"... If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

Let's think through this step by step. If he buys the first type of orange at 27.50 baht/kg and the second type at 20 baht/kg, and then sells the mixture at 25 baht/kg, there must be a specific ratio of the first to the second type such that he doesn't make a profit or a loss.

Let's denote:

  • x = amount of honey tangerine in kg
  • y = amount of green sweet orange in kg

For Sompong to break even: 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

This means Sompong buys 2 parts honey tangerine for every 1 part green sweet orange.

The answer is B, which is 2:1.

Actually, I don't think the problem is asking for a break-even ratio. Let me read it more carefully.

I think the problem is giving us information and asking for a computation based on that information.

Sompong mixes two types of oranges: honey tangerine (at 27.50 baht/kg) and green sweet orange (at 20 baht/kg). Sompong sells the mixture at 25 baht/kg. The problem asks us to determine the ratio of honey tangerine to green sweet orange in the mixture.

Let's denote:

  • x = amount of honey tangerine in kg
  • y = amount of green sweet orange in kg

I think the constraint here is that Sompong doesn't make a profit or a loss, so his cost is equal to his revenue:

Cost = 27.50x + 20y Revenue = 25(x + y) = 25x + 25y

Setting cost equal to revenue: 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.5x = 5y x = 2y

So, the ratio of honey tangerine to green sweet orange is 2:1.

Therefore, the answer is B, which is 2:1.

Actually, I was wrong, let me re-translate and re-read the question to make sure I understand it correctly.

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

The question is asking for the ratio of honey tangerine to green sweet orange that Sompong bought.

Let's denote:

  • x = amount of honey tangerine in kg
  • y = amount of green sweet orange in kg

Given that Sompong sells the mixture at 25 baht/kg, and assuming he breaks even (neither makes a profit nor a loss):

Cost = 27.50x + 20y Revenue = 25(x + y) = 25x + 25y

Setting cost equal to revenue: 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Therefore, the correct answer is B, which is 2:1.

Actually, I need to make sure I'm interpeting the problem correctly.

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

This problem seems straightforward: we need to find the ratio of the two types of oranges such that when Sompong sells the mixture at 25 baht/kg, he breaks even.

Let's denote:

  • x = amount of honey tangerine in kg
  • y = amount of green sweet orange in kg

For Sompong to break even: Cost = Revenue 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1.

Given the multiple choices, the answer is B, which is 2:1.

To further validate, let's try with some example values:

  • If Sompong buys 2 kg of honey tangerine and 1 kg of green sweet orange:
    • Cost: 2 * 27.50 + 1 * 20 = 55 + 20 = 75 baht
    • Revenue: 3 * 25 = 75 baht
    • He breaks even.

Since this ratio ensures he breaks even, the answer is 2:1.

Wait, upon rereading, I notice there's an ambiguity: the problem might be asking for the ratio of honey tangerine to green sweet orange that Sompong bought GIVEN that the selling price is 25 baht/kg, and not necessarily that he breaks even.

But, thinking logically, the problem gives us the buying prices of the two types of oranges and the selling price of the mixture. The most reasonable constraint to add is that Sompong breaks even. No other constraint is mentioned or implied.

Thus, the correct answer is B, which is 2:1.

Actually, I think I'm overthinking. Let me give it one more careful check:

"Sompong buys honey tangerine and green sweet orange to mix together. He buys honey tangerine at 27.50 baht per kilogram and green sweet orange at 20 baht per kilogram, respectively. If he sells the oranges at 25 baht per kilogram, when he sells all of them, what is the ratio of honey tangerine to green sweet orange that he bought?"

I think the constraint that Sompong breaks even is indeed implied in the problem. If not, there would be infinitely many possible answers, and a math problem typically has a unique solution.

So, the problem is asking for the ratio of honey tangerine to green sweet orange such that the revenue from selling the mixture equals the total cost of buying the two types of oranges.

Given that:

  • Honey tangerine costs 27.50 baht/kg.
  • Green sweet orange costs 20 baht/kg.
  • The mixture is sold at 25 baht/kg.

For Sompong to break even: Cost = Revenue 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 2.5x = 5y x/y = 5/2.5 = 2

So, the ratio of honey tangerine to green sweet orange is 2:1. Therefore, the correct answer is B, which is 2:1.

I'm now totally confident that this is the correct interpretation and solution.

The answer is B. 2:1.

To solve this problem, I need to determine the ratio of honey tangerine (ส้มสำยน้ำผึ้ง) to green sweet orange (ส้มเขียวหวาน) that would result in breaking even when sold at 25 baht per kilogram.

Given:

  • Honey tangerine costs 27.50 baht/kg
  • Green sweet orange costs 20 baht/kg
  • Selling price is 25 baht/kg

Let's denote:

  • x = amount of honey tangerine in kg
  • y = amount of green sweet orange in kg

For the seller to break even: Cost = Revenue 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 2.5x = 5y x/y = 2

Therefore, the ratio of honey tangerine to green sweet orange is 2:1.

{"correct_answer_key":"b"}

To solve this problem, let's break it down step by step:

  1. Define Variables:

    • Let ( x ) be the amount of ส้มสำยน้ำผึ้ง (in kg).
    • Let ( y ) be the amount of ส้มเขียวหวาน (in kg).
  2. Cost Equations:

    • The cost of ส้มสำยน้ำผึ้ง is ( 27.50x ) baht.
    • The cost of ส้มเขียวหวาน is ( 20y ) baht.
  3. Revenue Equation:

    • The total revenue from selling the mixed oranges is ( 25(x + y) ) baht.
  4. Profit Condition:

    • For the sale to be profitable, the revenue should at least cover the cost: [ 25(x + y) \geq 27.50x + 20y ]
  5. Simplify the Inequality: [ 25x + 25y \geq 27.50x + 20y ] [ 25y - 20y \geq 27.50x - 25x ] [ 5y \geq 2.50x ] [ 2y \geq x ] [ \frac{x}{y} \leq 2 ]

  6. Ratio Interpretation:

    • The ratio of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน should be less than or equal to 2:1.

Given the options, the closest and feasible ratio that satisfies the condition is 2:3.

{"correct_answer_key":"c"}

Explanation:

สมปองผสมส้มสองชนิดที่มีราคาต่างกันและขายในราคาที่ทำให้เกิดกำไรหรือขาดทุนขึ้นอยู่กับอัตราส่วนของส้มทั้งสองชนิดที่ผสมกัน

  1. กำหนดตัวแปร:

    • ให้ปริมาณส้มสายน้ำผึ้งเป็น ( x ) กิโลกรัม
    • ให้ปริมาณส้มเขียวหวานเป็น ( y ) กิโลกรัม
  2. ราคาทุนและราคาขาย:

    • ราคาทุนส้มสายน้ำผึ้ง: 27.50 บาท/กก.
    • ราคาทุนส้มเขียวหวาน: 20 บาท/กก.
    • ราคาขายส้มผสม: 25 บาท/กก.
  3. สมการกำไร/ขาดทุน:

    • ราคาทุนรวม: ( 27.50x + 20y )
    • ราคาขายรวม: ( 25(x + y) )
    • เนื่องจากสมปองขายในราคาที่ทำให้ไม่กำไรไม่ขาดทุน (สมมติให้เท่ากันเพื่อหาอัตราส่วน): [ 27.50x + 20y = 25(x + y) ] [ 27.50x + 20y = 25x + 25y ] [ 2.50x = 5y ] [ \frac{x}{y} = \frac{5}{2.50} = \frac{2}{1} ]
  4. อัตราส่วน:

    • อัตราส่วนส้มสายน้ำผึ้งต่อส้มเขียวหวานคือ ( 2:1 )

Answer:

{"correct_answer_key":"b"}

Okay, let's try to figure out this problem. So, Sompong bought two types of oranges: Sombat Namphueng and Som Khiew Wan. He mixed them together. The prices he bought them for are 27.50 baht per kg and 20 baht per kg respectively. Then he sells the mixture at 25 baht per kg. The question is asking for the ratio of Sombat Namphueng to Som Khiew Wan that he bought, such that when he sells the mixture at 25 baht per kg, he breaks even or makes a profit? Wait, but the problem says he sells at 25 baht per kg. Since he bought them at different prices, we need to find the ratio where the average cost price equals the selling price, so that there's no loss or gain.

Let me think. This is a typical mixture problem where the cost price of the mixture should equal the selling price. Wait, but selling price is given as 25 baht per kg. So, the average cost per kg of the mixture must be equal to 25 baht. Because if he sells at the same price as the average cost, there's no profit or loss. So, the key is to find the ratio of the two types of oranges such that the weighted average cost is 25 baht per kg.

Let me denote the quantity of Sombat Namphueng as x kg and Som Khiew Wan as y kg. The total cost would be 27.50x + 20y. The total weight of the mixture is x + y kg. The average cost per kg is (27.50x + 20y)/(x + y). This should equal 25 baht per kg because he sells it at 25 baht per kg. So:

(27.50x + 20y)/(x + y) = 25

Multiply both sides by (x + y):

27.50x + 20y = 25(x + y)

Expand the right side:

27.50x + 20y = 25x + 25y

Now, bring all terms to one side:

27.50x - 25x + 20y - 25y = 0

Simplify:

2.50x - 5y = 0

Divide both sides by 2.50 to simplify:

x - 2y = 0

So, x = 2y

Therefore, the ratio of x to y is 2:1. That means Sombat Namphueng to Som Khiew Wan is 2:1. Looking at the options, option b is 2:1. So the answer should be b.

To determine the ratio of Sombat Namphueng (27.50 THB/kg) to Som Khiew Wan (20 THB/kg) such that the average cost equals the selling price (25 THB/kg), set up the equation for weighted average cost:

[ \frac{27.50x + 20y}{x + y} = 25 ]

Solving: [ 27.50x + 20y = 25(x + y) \ 27.50x + 20y = 25x + 25y \ 2.50x = 5y \ \frac{x}{y} = \frac{5}{2.50} = 2:1 ]

The required ratio is 2:1.

{"correct_answer_key":"b"}

This question is in Thai and asks about mixing two types of oranges. Here's the translation and solution:

Question: Sompong buys honey oranges and mandarin oranges to mix together. He buys honey oranges and mandarin oranges for 27.50 baht per kilogram and 20 baht per kilogram, respectively. If he sells the mixed oranges for 25 baht per kilogram, when all the oranges are sold, what is the ratio of the quantity of honey oranges to mandarin oranges that he bought?

Solution:

Let 'x' be the quantity of honey oranges (in kg) and 'y' be the quantity of mandarin oranges (in kg).

Cost of honey oranges = 27.50x Cost of mandarin oranges = 20y Total cost = 27.50x + 20y

Selling price of the mixed oranges = 25(x+y)

Since he sells all the oranges, the total cost equals the total selling price:

27.50x + 20y = 25(x+y) 27.50x + 20y = 25x + 25y 2.50x = 5y x = 2y

Therefore, the ratio of honey oranges to mandarin oranges is x:y = 2y:y = 2:1

{"correct_answer_key": "b"}

Let x be the amount of sweet tangerine (ส้มสำยน้ำผึ้ง) and y be the amount of green tangerine (ส้มเขียวหวาน). The cost of the sweet tangerine is 27.50x and the cost of the green tangerine is 20y. The total cost is 27.50x + 20y. The total revenue from selling the mixture is 25(x+y). To break even, the total cost must equal the total revenue: 27.50x + 20y = 25(x+y). This simplifies to 27.50x + 20y = 25x + 25y, which further simplifies to 2.5x = 5y. Dividing both sides by 2.5 gives x = 2y. Therefore, the ratio of sweet tangerine to green tangerine is x:y = 2y:y = 2:1.

{"correct_answer_key":"b"}

Let's break down the problem. This is a mixture problem where we need to determine the ratio of two components (orange types) based on their cost and selling price. The question is in Thai, but the core concept is the same. We need to find the ratio of the amount of each type of orange purchased. Since we don't have enough information to solve this problem, we cannot determine the correct answer.

{"correct_answer_key": null}

Explanation: The question is asking for the ratio of Sai Nam Phueng oranges to Khiao Wan oranges that Sompong bought to sell at a mixed price of 25 baht per kilogram and break even. Let's assume the ratio of Sai Nam Phueng oranges to Khiao Wan oranges is x:y. The cost of Sai Nam Phueng oranges is 27.50 baht/kg and Khiao Wan oranges is 20 baht/kg. The selling price of the mixture is 25 baht/kg. To break even, the average cost price must be equal to the selling price. We can set up an equation to find the ratio:

(27.50x + 20y) / (x + y) = 25

27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.50x = 5y x / y = 5 / 2.50 x / y = 2 / 1

The ratio of Sai Nam Phueng oranges to Khiao Wan oranges is 2:1.

{"correct_answer_key":"b"}

The problem describes mixing two types of oranges with different costs and selling the mixture at a single price. To find the ratio of the quantities purchased such that selling at 25 baht per kg results in a specific outcome (implied to be break-even or average cost equals selling price), we can use the mixing rule. The ratio of the quantity of the first type (cost 27.50) to the second type (cost 20) is given by the difference between the selling price and the cost of the second type, compared to the difference between the cost of the first type and the selling price. This ratio is $(25 - 20) : (27.50 - 25) = 5 : 2.5 = 2 : 1$.

{"correct_answer_key":"b"}

The problem asks for the ratio of the quantity of Honey Tangerine oranges to Mandarin oranges that Sompong bought, given the purchase prices, selling price, and the fact that he sold all the oranges. To solve this, we can use the concept of weighted average or set up an equation based on the total cost and total revenue. Let x be the quantity of Honey Tangerine oranges and y be the quantity of Mandarin oranges. The total cost is 27.50x + 20y. The total revenue is 25(x+y). Since he sold all the oranges, we can assume that the total cost equals the total revenue for him to break even or make a profit (the problem doesn't specify profit, but the ratio is independent of profit margin if the selling price is fixed). However, a more direct approach is to consider the profit/loss per kilogram for each type of orange when sold at 25 baht/kg. Honey Tangerine has a loss of 27.50 - 25 = 2.50 baht/kg. Mandarin has a profit of 25 - 20 = 5 baht/kg. For the overall transaction to be balanced (or to find the ratio that results in a certain average price), the total loss from Honey Tangerine must be offset by the total profit from Mandarin. So, 2.50x = 5y. Dividing both sides by 2.50y, we get x/y = 5/2.50 = 2. Therefore, the ratio of Honey Tangerine to Mandarin is 2:1.

{"correct_answer_key":"b"}

Brief Explanation:

This is a mixture problem. Let 'x' be the kilograms of Sai Nam Phueng oranges (costing 27.50 Baht/kg) and 'y' be the kilograms of Khiao Wan oranges (costing 20 Baht/kg). The mixture is sold at 25 Baht/kg. To find the ratio where the selling price represents the weighted average cost, we set the total cost equal to the total revenue (or value at the selling price):

Cost of Sai Nam Phueng + Cost of Khiao Wan = Value of Mixture (27.50 * x) + (20 * y) = 25 * (x + y) 27.50x + 20y = 25x + 25y Subtract 25x from both sides: 2.50x + 20y = 25y Subtract 20y from both sides: 2.50x = 5y Divide both sides by y and then by 2.50: x / y = 5 / 2.50 x / y = 2 / 1

The ratio of Sai Nam Phueng oranges (x) to Khiao Wan oranges (y) is 2:1. This corresponds to option 'b'.

{"correct_answer_key":"b"}

This question is about a mixture problem involving costs and ratios. Let 'x' be the amount of som-sai nam phueng (tangerine) and 'y' be the amount of som kiew wan (mandarin orange) in kilograms. The cost price is weighted average of the two types of oranges. The selling price is 25 baht/kg. To break even, the total cost must equal the total revenue. We need to find the ratio x:y.

The total cost is 27.50x + 20y. The total amount of oranges is x+y, and the selling price is 25(x+y). Therefore, 27.50x + 20y = 25(x+y). Simplifying this equation:

27.50x + 20y = 25x + 25y 2.50x = 5y x/y = 5/2.5 = 2/1

Therefore, the ratio of som-sai nam phueng to som kiew wan is 2:1.

{"correct_answer_key":"b"}

คำถามนี้เป็นโจทย์ผสมราคาขายเฉลี่ย (Alligation)
ให้ x = จำนวนกิโลกรัมของส้มสำยน้ำผึ้ง (27.50 บาท/กก.)
y = จำนวนกิโลกรัมของส้มเขียวหวาน (20 บาท/กก.)
ขายรวมกันที่ 25 บาท/กก.

ใช้สูตร alligation:
(ราคาแพง - ราคาขาย) : (ราคาขาย - ราคาถูก)
= (27.50 - 25) : (25 - 20)
= 2.50 : 5
= 1 : 2

ดังนั้น อัตราส่วนส้มสำยน้ำผึ้งต่อส้มเขียวหวาน คือ 1:2

{"correct_answer_key":"a"}

This problem involves mixing two types of oranges with different prices and selling the mixture at a given price. To find the ratio of the quantities of the two types of oranges, we can use the allegation method.

  • Price of ส้มสำยน้ำผึ้ง = 27.50 บาท/kg
  • Price of ส้มเขียวหวาน = 20 บาท/kg
  • Price of mixture = 25 บาท/kg

Using allegation:

Ratio = (Price of ส้มสำยน้ำผึ้ง - Price of mixture) : (Price of mixture - Price of ส้มเขียวหวาน)
= (27.50 - 25) : (25 - 20)
= 2.5 : 5
= 1 : 2

So, the ratio of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน is 1:2.

{"correct_answer_key":"a"}

สมปองซื้อส้มสำยน้ำผึ้งในราคากิโลกรัมละ 27.50 บาท และส้มเขียวหวานในราคากิโลกรัมละ 20 บาท เขาขายส้มในราคากิโลกรัมละ 25 บาท ซึ่งต่ำกว่าราคาซื้อของส้มสำยน้ำผึ้ง แต่สูงกว่าส้มเขียวหวาน ทำให้เขาขาดทุนจากส้มสำยน้ำผึ้งและมีกำไรจากส้มเขียวหวาน การหาสัดส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเพื่อให้ได้สัดส่วนที่ขายหมดโดยไม่ขาดทุนหรือได้กำไรเป็นไปตามอัตราส่วนที่เหมาะสม

จากข้อมูลนี้ สัดส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ 2:3 เพื่อให้สัดส่วนนี้สอดคล้องกับราคาขายและต้นทุน

{"correct_answer_key":"c"}

ขั้นแรก เราตั้งสมการเพื่อหาสัดส่วนของส้มทั้งสองชนิดที่ผสมกัน:

ให้ปริมาณส้มสายน้ำผึ้งเป็น ( x ) กิโลกรัม และส้มเขียวหวานเป็น ( y ) กิโลกรัม

ราคาส้มสายน้ำผึ้ง ( 27.50 ) บาท/กก. และส้มเขียวหวาน ( 20 ) บาท/กก.
ราคาขายผสม ( 25 ) บาท/กก.

ดังนั้น เราได้สมการเฉลี่ยราคา: [ \frac{27.50x + 20y}{x + y} = 25 ]

แก้สมการ: [ 27.50x + 20y = 25(x + y) ]

ขยายวงเล็บ: [ 27.50x + 20y = 25x + 25y ]

จัดรูปสมการใหม่: [ 27.50x - 25x = 25y - 20y ]

[ 2.50x = 5y ]

[ \frac{x}{y} = \frac{5}{2} ]

ดังนั้น อัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานคือ (5:2) หรือ (2.5:1) ซึ่งไม่มีในตัวเลือกที่ให้มา อาจมีข้อผิดพลาดในการพิมพ์โจทย์หรือข้อสอบต้นฉบับ

จากโจทย์ที่ให้มา ตัวเลือกที่ใกล้เคียงที่สุดคือ (2:1) (ตัวเลือก b) ซึ่งใกล้เคียงกับ (5:2) มากที่สุด

{"correct_answer_key":"b"}

To solve this problem, we need to determine the ratio of the amount of som saiy namphueng (SS) to som khiao wan (SK) that Sompong bought, given the cost prices and the selling price.

  1. Let ( x ) be the kilograms of SS and ( y ) be the kilograms of SK.
  2. The cost of SS is ( 27.50x ) and the cost of SK is ( 20y ).
  3. The total cost is ( 27.50x + 20y ).
  4. The selling price per kilogram is 25, so the total selling price is ( 25(x + y) ).

For Sompong to break even (no profit or loss), the total cost should equal the total selling price:

[ 27.50x + 20y = 25(x + y) ]

Expanding and simplifying:

[ 27.50x + 20y = 25x + 25y ]

[ 27.50x - 25x = 25y - 20y ]

[ 2.50x = 5y ]

[ x/y = 5/2.5 = 2/1 ]

Thus, the ratio of SS to SK is 2:1, which corresponds to option B.

{"correct_answer_key":"b"}

ในการแก้ปัญหานี้ เราต้องคำนวณสัดส่วนของส้มสำยน้ำผึ้งและส้มเขียวหวานที่สมปองซื้อมา โดยพิจารณาจากราคาที่เขาซื้อและราคาที่เขาขาย

  1. สมปองซื้อส้มสำยน้ำผึ้งในราคา 27.50 บาทต่อกิโลกรัม และส้มเขียวหวานในราคา 20 บาทต่อกิโลกรัม
  2. เขาขายส้มในราคา 25 บาทต่อกิโลกรัม

เพื่อหาสัดส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวาน เราต้องคำนวณต้นทุนรวมและราคาขายรวม จากนั้นหาสัดส่วนที่ทำให้เขาไม่ขาดทุน

การคำนวณจะต้องใช้ข้อมูลเพิ่มเติมเกี่ยวกับจำนวนกิโลกรัมที่ซื้อมา แต่จากข้อมูลที่ให้มา เราสามารถสรุปได้ว่า สัดส่วนที่เหมาะสมที่สุดคือ 1:2 ซึ่งหมายความว่าสมปองซื้อส้มสำยน้ำผึ้ง 1 กิโลกรัม และส้มเขียวหวาน 2 กิโลกรัม

ดังนั้นคำตอบที่ถูกต้องคือ "1:2"

{"correct_answer_key":"a"}

สมปองซื้อส้มสองชนิดในราคาต่างกัน และขายในราคาเดียวกันที่ 25 บาทต่อกิโลกรัม โดยเราต้องหาอัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมา เพื่อให้เมื่อขายหมดแล้วได้กำไรหรือขาดทุนตามเงื่อนไข (ในที่นี้คือสมดุลหรือกำไร/ขาดทุนเป็นศูนย์ตามการวิเคราะห์ต้นทุนเฉลี่ย)

ส้มสายน้ำผึ้งราคา 27.50 บาท/กก. และส้มเขียวหวานราคา 20 บาท/กก. ขายทั้งหมดที่ 25 บาท/กก. หากสมมติอัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานเป็น x:y

  • ต้นทุนรวม = (27.50x + 20y) บาท
  • รายได้รวม = 25(x + y) บาท

เพื่อให้ต้นทุนเฉลี่ยใกล้เคียงกับราคาขาย (หรือกำไร/ขาดทุนสมดุล) ตั้งสมการ: 27.50x + 20y = 25(x + y) 27.50x + 20y = 25x + 25y 27.50x - 25x = 25y - 20y 2.50x = 5y x/y = 5/2.50 = 2/1

ดังนั้น อัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานคือ 2:1 ซึ่งตรงกับตัวเลือก B

{"correct_answer_key":"b"}

First, the user has provided another multiple-choice question in JSON format. It's in Thai, which might be a challenge, but I need to translate and understand it to provide a correct response.

Let me translate the question:

"สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาผสมกัน โดยซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาราคา กิโลกรัมละ 27.50 บาท และ 20 บาท ตามลำดับ ถ้าเขาขายส้มไปในราคากิโลกรัมละ 25 บาท เมื่อขายหมดปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?"

Breaking it down:

  • สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาผสมกัน: Sompong buys honey oranges and green oranges and mixes them together.

  • ราคา กิโลกรัมละ 27.50 บาท และ 20 บาท ตามลำดับ: The price is 27.50 Baht per kg for honey oranges and 20 Baht per kg for green oranges.

  • ถ้าเขาขายส้มไปในราคากิโลกรัมละ 25 บาท: If he sells the oranges at 25 Baht per kg.

  • เมื่อขายหมดปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?: When he sells all, what is the ratio of the quantity of honey oranges to green oranges that he bought?

The last part: "ปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?" means "the quantity of honey oranges to green oranges that he bought is equal to what?"

It seems like it's asking for the ratio in which he bought them, but based on the selling price or profit? The question is a bit unclear. Let me read it carefully.

It says: "เมื่อขายหมดปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?" Which translates to: "When he sells all, the quantity of honey oranges to green oranges that he bought is equal to what?"

That doesn't make sense because the ratio he bought is what we're supposed to find, but it's probably implying that he mixes and sells them at a uniform price, and perhaps we need to find the ratio where his profit or cost is balanced or something. The question might be incomplete or assuming something.

Perhaps it's about break-even or where the cost per kg is equal or something, but let's think.

He buys two types: Honey orange at 27.50 Baht/kg and Green orange at 20 Baht/kg.

He mixes them and sells at 25 Baht/kg.

We need to find the ratio of honey oranges to green oranges such that when mixed and sold, it's profitable or perhaps the overall cost equals the selling price? The question is asking for the ratio he bought, implying the ratio that makes sense for the selling price.

Typically, in such problems, we assume he wants the average cost to equal the selling price, so no profit no loss.

So, let’s denote:

Let the ratio of honey oranges (A) to green oranges (B) be x:1 or something. The options are like 1:2, 2:1, etc.

Let’s say he buys m kg of honey oranges and n kg of green oranges.

Cost of m kg A: 27.50 * m

Cost of n kg B: 20 * n

Total cost: 27.50m + 20n

Total weight: m + n kg

Selling price: 25 * (m + n)

For no profit no loss, total cost = total selling price

So, 27.50m + 20n = 25(m + n)

Let’s solve that equation.

27.50m + 20n = 25m + 25n

Bring terms together:

27.50m - 25m = 25n - 20n

2.50m = 5n

Divide both sides by 2.50: m = (5 / 2.50) n

m = 2n

So, m:n = 2:1

Therefore, the ratio of honey oranges to green oranges is 2:1

The question says: "ปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวาน" which is honey oranges to green oranges, so m:n = 2:1

And looking at the options: a:1:2, b:2:1, c:2:3, d:3:2, e:1:1

So, b:2:1

I am considering if that's correct. Yes, seems right.

The question is: "เมื่อขายหมดปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ เท่าไร?" Which might be interpreted as the ratio is what, based on the context.

I think that's the standard assumption.

So, the correct answer is b: "2:1"

Now, as per the initial instruction, I need to provide a brief explanation, then respond in JSON with the "correct_answer_key".

First, brief explanation: Sompong buys honey oranges at 27.50 Baht/kg and green oranges at 20 Baht/kg. He sells the mixture at 25 Baht/kg. To break even, the ratio of honey oranges to green oranges should be such that the average cost is 25 Baht/kg, leading to 2:1 ratio.

Then, respond: {"correct_answer_key":"b"}

Brief Explanation:

สมปองซื้อส้มสายน้ำผึ้งในราคา 27.50 บาทต่อกิโลกรัม และส้มเขียวหวานในราคา 20 บาทต่อกิโลกรัม แล้วขายส้มผสมในราคา 25 บาทต่อกิโลกรัม เพื่อให้ต้นทุนเท่ากับราคาขาย (ไม่กำไรไม่ขาดทุน) เราจำเป็นต้องหาสัดส่วนที่ต้นทุนเฉลี่ยเท่ากับ 25 บาทต่อกิโลกรัม โดยสมการคือ: 27.50m + 20n = 25(m + n) ซึ่งนำไปสู่ m/n = 2/1 ดังนั้น อัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาคือ 2:1 ซึ่งตรงกับตัวเลือก b.

{"correct_answer_key":"b"}

สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาผสมกัน โดยซื้อส้มสำยน้ำผึ้งมาในราคา 27.50 บาทต่อกิโลกรัม และส้มเขียวหวานมาในราคา 20 บาทต่อกิโลกรัม จากนั้นเขาขายส้มผสมนี้ไปในราคา 25 บาทต่อกิโลกรัม เพื่อให้ได้กำไรหรือไม่ขาดทุน เขาต้องขายส้มผสมนี้ให้ได้ราคาที่เท่ากับราคาต้นทุนเฉลี่ยของส้มทั้งสองชนิด

สมมติว่าสมปองซื้อส้มสำยน้ำผึ้ง x กิโลกรัม และส้มเขียวหวาน y กิโลกรัม ราคาต้นทุนรวมของส้มทั้งสองชนิดคือ:

27.50x + 20y

ปริมาณส้มทั้งหมดที่สมปองมีคือ x + y และเขาขายส้มผสมนี้ไปในราคา 25 บาทต่อกิโลกรัม ดังนั้น รายได้รวมจากการส้มผสมคือ:

25(x + y)

เพื่อให้ไม่ขาดทุนหรือได้กำไร ราคาต้นทุนรวมต้องเท่ากับรายได้รวม:

27.50x + 20y = 25(x + y)

ลดความซับซ้อนของสมการ:

27.50x + 20y = 25x + 25y

ย้ายพจน์ไปด้านหนึ่ง:

27.50x - 25x = 25y - 20y

2.50x = 5y

หารทั้งสองข้างด้วย 2.50:

x = 2y

หารทั้งสองข้างด้วย y:

x/y = 2

ดังนั้น อัตราส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่สมปองซื้อมาคือ 2:1

{"correct_answer_key":"b"}

To solve this, let's assume that สมปอง bought x kilograms of ส้มสำยน้ำผึ้ง and y kilograms of ส้มเขียวหวาน. The total cost of the oranges is 27.50x + 20y. The total quantity is x + y. He sells them at 25 per kilogram, so the total revenue is 25(x + y).

Since the problem implies that he breaks even (no profit or loss is mentioned), we can set the total revenue equal to the total cost: 25(x + y) = 27.50x + 20y

Expanding the equation gives: 25x + 25y = 27.50x + 20y

Subtracting 25x from both sides and also subtracting 20y from both sides gives: 5y = 2.50x

Dividing both sides by 2.50y to find the ratio of x to y: x/y = 5/2.50 = 2/1

So, the ratio of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน is 2:1.

{"correct_answer_key":"b"}

To solve this, let's assume the quantity of ส้มสำยน้ำผึ้ง (pomelo) and ส้มเขียวหวาน (tangerine) bought are P and T kilograms respectively.

The cost price for pomelo is 27.50P and for tangerine is 20T.

The selling price for both types of oranges combined is 25(P + T).

For สมปอง (Sompong) to break even, the total cost price should equal the total selling price:

27.50P + 20T = 25(P + T))

Let's simplify:

27.50P + 20T = 25P + 25T

2.50P = 5T

P/T = 5/2.5 = 2/1 or P:T = 2:1 or ส้มสำยน้ำผึ้ง:ส้มเขียวหวาน = 2:1

However, the question seems to be about the ratio of pomelos to tangerines (ส้มสำยน้ำผึ้งต่อส้มเขียวหวาน) that were bought.

Given that,

{"correct_answer_key":"b"}

To solve this problem, we need to determine the ratio of the quantities of the two types of oranges (ส้มสำยน้ำผึ้ง and ส้มเขียวหวาน) that Sumpong buys and sells.

  1. Costs and Selling Price:

    • ส้มสำยน้ำผึ้ง: 27.50 บาท per kilogram
    • ส้มเขียวหวาน: 20 บาท per kilogram
    • Selling price: 25 บาท per kilogram
  2. Setting Up the Equation: Let ( x ) be the quantity of ส้มสำยน้ำผึ้ง and ( y ) be the quantity of ส้มเขียวหวาน.

    The total cost of buying the oranges is: [ 27.50x + 20y ]

    The total revenue from selling the oranges is: [ 25(x + y) ]

  3. Equating Costs and Revenue: Since Sumpong wants to break even (costs equal revenue): [ 27.50x + 20y = 25(x + y) ]

  4. Simplifying the Equation: [ 27.50x + 20y = 25x + 25y ] [ 27.50x - 25x = 25y - 20y ] [ 2.50x = 5y ] [ x = 2y ]

  5. Finding the Ratio: The ratio of ( x ) to ( y ) is: [ \frac{x}{y} = 2:1 ]

Thus, the ratio of the quantities of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน is 2:1, which corresponds to option B.

{"correct_answer_key":"b"}

โดยใช้หลักการเฉลี่ยผสม (Weighted Average):
(27.5x + 20y) / (x + y) = 25
⇒ 27.5x + 20y = 25(x + y)
⇒ 27.5x + 20y = 25x + 25y
⇒ 2.5x = 5y
⇒ x:y = 2:1

ดังนั้นอัตราส่วนของส้มสายน้ำผึ้งต่อส้มเขียวหวานคือ 2:1

{"correct_answer_key":"b"}

ราคาต้นทุนเฉลี่ยของส่วนผสมต้องเท่ากับราคาขาย

ให้ h = น้ำหนักส้มสายน้ำผึ้ง (27.50 บาท/กก.)
g = น้ำหนักส้มเขียวหวาน (20 บาท/กก.)

(27.5h + 20g) / (h + g) = 25
27.5h + 20g = 25h + 25g
2.5h = 5g
h = 2g

ดังนั้น อัตราส่วนส้มสายน้ำผึ้ง : ส้มเขียวหวาน = 2 : 1

{"correct_answer_key":"b"}

ราคาส้มสำยน้ำผึ้ง (27.50 บ./กก.) และส้มเขียวหวาน (20 บ./กก.) ถูกผสมแล้วขายกิโลกรัมละ 25 บาท
ให้ x = กก. ของส้มสำยน้ำผึ้ง, y = กก. ของส้มเขียวหวาน

สมดุลราคา:
27.5x + 20y = 25(x + y)

27.5x + 20y = 25x + 25y
2.5x = 5y
x = 2y

ดังนั้น อัตราส่วนส้มสำยน้ำผึ้ง : ส้มเขียวหวาน = 2 : 1

{"correct_answer_key":"b"}

ราคาต้นทุน
• ส้มสายน้ำผึ้ง = 27.50 บาท/กก. (สูงกว่า)
• ส้มเขียวหวาน = 20 บาท/กก. (ต่ำกว่า)
• ราคาขาย (เฉลี่ยเป้าหมาย) = 25 บาท/กก.

ใช้หลักผสมแบบอัลลิเกชัน (alligation):

ส่วนของของแพง : ส่วนของของถูก
= (ราคาเฉลี่ย – ราคาถูก) : (ราคาแพง – ราคาเฉลี่ย)
= (25 − 20) : (27.5 − 25)
= 5 : 2.5
= 2 : 1

ดังนั้น ส้มสายน้ำผึ้ง : ส้มเขียวหวาน = 2 : 1

{"correct_answer_key":"b"}

We let x be the kilograms of the 27.50-baht fruit (ส้มสำยน้ำผึ้ง) and y be the kilograms of the 20-baht fruit (ส้มเขียวหวาน). Since Sompong sold the mix at 25 baht per kg, the weighted average cost must equal 25:

  (27.50x + 20y)⁄(x + y) = 25

Multiply both sides by (x + y):

  27.50x + 20y = 25x + 25y

Rearrange to isolate terms:

  27.50x – 25x = 25y – 20y
  2.50x = 5y

Divide both sides by 2.50:

  x = 2y

This gives a ratio of x:y = 2:1. Therefore, Sompong must have mixed the fruits in the ratio 2:1, which corresponds to option b.

{"correct_answer_key":"b"}

ในการคำนวณหาสัดส่วนของส้มทั้งสองประเภทเพื่อให้ราคาเฉลี่ยของส่วนผสมเท่ากับ 25 บาทต่อกิโลกรัม ให้ตั้งให้ส้มสำยน้ำผึ้งมีจำนวน x กิโลกรัม (ราคาต่อกิโลกรัม 27.50 บาท) และส้มเขียวหวานมีจำนวน y กิโลกรัม (ราคาต่อกิโลกรัม 20 บาท) เรามี

  (27.50x + 20y) / (x + y) = 25

คูณทั้งสองข้างด้วย (x + y) จะได้

  27.50x + 20y = 25x + 25y

หักลบ 25x และ 20y ออกจากทั้งสองข้าง

  2.5x = 5y

จึงได้

  x = 2y

แปลว่า สัดส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวาน คือ 2:1

{"correct_answer_key": "b"}

When Sompong mixes two types of oranges, the total cost is 27.50x + 20y, where x and y are the kilograms purchased of ส้มสำยน้ำผึ้ง and ส้มเขียวหวาน respectively. He sells the mixture at 25 per kg for a total revenue of 25(x+y). For no profit or loss, the cost must equal the revenue:

27.50x + 20y = 25(x + y)
27.50x + 20y = 25x + 25y
(27.50 - 25)x = (25 - 20)y
2.50x = 5y
x = 2y

Thus, the ratio of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน is 2:1, which corresponds to option "b".

{"correct_answer_key": "b"}

สมการราคาขายเฉลี่ย
(27.5 H + 20 T)/(H+T) = 25
27.5H + 20T = 25H + 25T ⇒ 2.5H = 5T ⇒ H:T = 2:1

{"correct_answer_key":"b"}

Using alligation:
Difference between honey cost (27.50) and mix price (25) = 2.50 → green amount
Difference between mix price (25) and green cost (20) = 5.00 → honey amount
Ratio honey : green = 5 : 2.5 = 2 : 1

{"correct_answer_key":"b"}

ราคาขายเฉลี่ยต้องได้ 25 บาท/กก.
ให้ x กก. เป็นส้มห้ำผึ้ง (27.50 บ.) และ y กก. เป็นส้มเขียวหวาน (20 บ.)
(27.5x + 20y)/(x+y) = 25 ⇒ 27.5x + 20y = 25x + 25y ⇒ 2.5x = 5y ⇒ x/y = 2/1

{"correct_answer_key":"b"}

To solve this problem, we need to determine the ratio of the quantities of sweet orange and sweet lime that Somporn bought, given that he sold all the oranges at a loss.

Let's denote:

  • ( x ) as the kilograms of sweet orange.
  • ( y ) as the kilograms of sweet lime.

The cost price for sweet orange is 27.50 baht per kilogram, and for sweet lime, it is 20 baht per kilogram. The selling price for both is 25 baht per kilogram.

The total cost price is: [ 27.50x + 20y ]

The total selling price is: [ 25(x + y) ]

Since he sells at a loss, the total selling price is less than the total cost price: [ 25(x + y) < 27.50x + 20y ]

Simplifying the inequality: [ 25x + 25y < 27.50x + 20y ]

Rearranging terms gives: [ 25y - 20y < 27.50x - 25x ]

[ 5y < 2.50x ]

Dividing both sides by 2.50: [ 2y < x ]

This implies: [ \frac{x}{y} > 2 ]

The smallest integer ratio greater than 2 is 3:2. Therefore, the ratio of sweet orange to sweet lime is 3:2.

The correct answer is option D.

{"correct_answer_key":"d"}

Explanation:

To solve this problem, we need to determine the ratio of the quantities of ส้มสำยน้ำผื้ง (premium oranges) to ส้มเขียวหวาน (regular oranges) such that the selling price of 25 บาท per kilogram results in no profit or loss.

Step 1: Define variables

Let:

  • ( x ) = quantity (in kg) of ส้มสำยน้ำผึ้ง,
  • ( y ) = quantity (in kg) of ส้มเขียวหวาน.

The total cost of the oranges is: [ \text{Total cost} = 27.50x + 20y ]

The total selling price is: [ \text{Total selling price} = 25(x + y) ]

Step 2: No profit or loss condition

For no profit or loss, the total cost equals the total selling price: [ 27.50x + 20y = 25(x + y) ]

Simplify the equation: [ 27.50x + 20y = 25x + 25y ]

Rearrange terms: [ 27.50x - 25x = 25y - 20y ]

[ 2.50x = 5y ]

Simplify further: [ x : y = 5 : 2.5 = 2 : 1 ]

Thus, the ratio of ส้มสำยน้ำผึ้ง to ส้มเขียวหวาน is ( 2:1 ).

Correct Answer:

{"correct_answer_key":"b"}

Okay, let's tackle this problem step by step. First, I need to understand what's being asked here. The question is in Thai, so I'll try to parse it carefully.

So, Sompong buys two types of oranges: "สำยน้ำผึ้ง" and "ส้มเขียวหวาน". Let me note their prices: the first type costs 27.50 baht per kilogram, and the second is 20 baht per kilogram. He mixes them and sells the mixture at 25 baht per kilogram. When he sells all of them, the ratio of the first type to the second type that he bought is what we need to find. The options are given from a to e.

Hmm, this sounds like a mixture problem where we have to find the ratio of the two types of oranges that would result in the selling price of 25 baht/kg. Since he's mixing two types with different costs and selling at a middle price, the ratio can be found using the concept of weighted averages or alligation.

Let me recall the alligation method. When two components are mixed to get an average price, the ratio of their quantities is the difference between the opposite prices.

The cost prices are 27.50 and 20. The selling price is 25, which is the mean price.

So, the differences would be:

27.50 - 25 = 2.50

25 - 20 = 5.00

The ratio of the quantities would be the inverse of these differences. So, the ratio of the cheaper to the dearer is 2.5 : 5, which simplifies to 1:2. Wait, but hold on—the alligation method gives the ratio of the quantities in the order of the cheaper to the dearer. But here, the first type (27.50) is dearer, and the second (20) is cheaper.

So, the ratio of the dearer (27.50) to the cheaper (20) would be the difference between the mean and the cheaper over the difference between the dearer and the mean. Wait, let me get this straight.

Alligation formula:

The ratio of quantities (Cheaper : Dearer) = (Dearer Price - Mean Price) : (Mean Price - Cheaper Price)

So here, Cheaper is 20, Dearer is 27.50, Mean is 25.

So, the ratio would be (27.50 -25) : (25 -20) = 2.5 :5 = 1:2.

But this ratio is for Cheaper:Dearer. Wait, no, wait. Let me confirm again.

The formula is:

If you have two items at prices C and D (C < D), and the mean price M, then the ratio of quantities (C : D) is (D - M) : (M - C).

So in this case, C is 20, D is 27.50, M is 25.

So (27.50 -25) : (25 -20) = 2.5 :5 = 1:2.

Therefore, the ratio of Cheaper (20 baht) to Dearer (27.50 baht) is 1:2.

But the question asks for the ratio of the first type (สำยน้ำผึ้ง, which is the dearer one at 27.50) to the second type (ส้มเขียวหวาน, the cheaper at 20).

So the ratio of dearer to cheaper is inverse of 1:2, which is 2:1. Wait, no. Let me think again.

The ratio from alligation is Cheaper:Dearer = 1:2. So the ratio of the cheaper (20) to dearer (27.50) is 1:2. Therefore, the ratio of dearer to cheaper would be 2:1.

So the answer should be 2:1, which is option b.

Wait, but let me check with another method to be sure. Let's use algebra.

Let’s denote the amount of the first type (27.50) as x kg, and the second type (20) as y kg.

Total cost is 27.50x + 20y.

Total selling price is 25(x + y).

Since he sells all, the total cost should equal the total selling price? Wait, no, that can't be. Wait, actually, the problem doesn't mention profit or loss. Hmm, maybe I need to assume that the selling price is such that there's no profit or loss? Or perhaps the question is implying that the selling price is set so that the average cost is 25?

Wait, the problem says "เมื่อขายหมด" (when sold out), the ratio of the first to the second is equal to what? So maybe the selling price is 25, and the question is to find the ratio that allows the cost to be such that the selling price gives a certain condition? Wait, perhaps the problem is that the selling price is 25, so the total revenue is 25*(x + y). The cost is 27.5x +20y. But unless there's a profit or loss percentage given, maybe the problem is that the selling price is exactly equal to the cost price? That would mean 25(x + y) = 27.5x +20y.

Ah, that must be the case. Otherwise, we can't determine the ratio without knowing profit or loss. So assuming that the selling price is equal to the cost price (no profit, no loss), then:

25(x + y) = 27.5x +20y

Let me rearrange this equation:

25x +25y =27.5x +20y

25y -20y =27.5x -25x

5y =2.5x

Divide both sides by 2.5:

2y =x

So x/y = 2/1 → x:y = 2:1.

Wait, so x is the first type (27.50), y is the second (20). So the ratio of first to second is x:y =2:1, which is option b.

Yes, that matches the alligation method. So the correct answer is B, 2:1.

Therefore, the answer key should be "b".

To determine the ratio of สำยน้ำผึ้ง (27.50 บาท/kg) to ส้มเขียวหวาน (20 บาท/kg) that allows John to sell the mixture at 25 บาท/kg with no profit/loss, we set the total cost equal to total revenue:

Equation Setup:

  • Let ( x ) = kg of สำยน้ำผึ้ง, ( y ) = kg of ส้มเขียวหวาน.
  • Total cost: ( 27.50x + 20y ).
  • Total revenue: ( 25(x + y) ).

Equation: [ 25(x + y) = 27.50x + 20y ]

Simplifying: [ 25x + 25y = 27.50x + 20y \implies 5y = 2.5x \implies \frac{x}{y} = \frac{2}{1}. ]

The ratio of สำยน้ำผึ้ง to ส้มเขียวหวาน is 2:1, corresponding to option b.

{"correct_answer_key":"b"}

สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานมาราคา กิโลกรัมละ 27.50 บาท และ 20 บาท ตามลำดับ และขายส้มไปในราคากิโลกรัมละ 25 บาท เพื่อให้ได้กำไรสูงสุด เขาควรขายส้มที่มีราคาถูกกว่า (ส้มเขียวหวาน) มากกว่าส้มที่มีราคาแพงกว่า (ส้มสำยน้ำผึ้ง) ดังนั้นเขาควรซื้อส้มเขียวหวานมากกว่าส้มสำยน้ำผึ้ง

สมมุติว่าสมปองซื้อส้มสำยน้ำผึ้ง x กิโลกรัม และส้มเขียวหวาน y กิโลกรัม ต้นทุนรวมจะเป็น 27.50x + 20y บาท และรายได้รวมจะเป็น 25(x + y) บาท

เพื่อให้ได้กำไรสูงสุด ต้นทุนรวมควรเท่ากับรายได้รวม:

27.50x + 20y = 25(x + y)

เมื่อจัดรูปสมการ:

27.50x + 20y = 25x + 25y

2.50x = 5y

x/y = 2/1

ดังนั้น ปริมาณส้มสำยน้ำผึ้งต่อส้มเขียวหวานที่ซื้อมาเท่ากับ 1:2

{"correct_answer_key":"a"}

Alright! Let's tackle this problem step by step.

First, I need to understand what's being asked. The question is about mixing two types of oranges—ส้มสำยน้ำผึ้ง (honey oranges) and ส้มเขียวหวาน (sweet oranges)—to sell them at a certain price. The goal is to find the ratio of honey oranges to sweet oranges that Sompong bought.

The given information includes the cost prices of each type of orange:

  • ส้มสำยน้ำผึ้ง: 27.50 บาท per kilogram
  • ส้มเขียวหวาน: 20 บาท per kilogram

He sells the mixed oranges at 25 บาท per kilogram. The question is asking for the ratio of the quantities of honey oranges to sweet oranges that he purchased.

To solve this, I can use the concept of weighted averages or mixture problems. The idea is that the cost price of the mixture should equal the selling price. However, since he is making a profit or loss, we need to determine the exact ratio that balances the costs and the selling price.

Let’s denote:

  • x = quantity of honey oranges (in kg)
  • y = quantity of sweet oranges (in kg)

The total cost price (TCP) would be the sum of the costs of both types: TCP = 27.50x + 20y

The selling price (SP) for the mixture is 25 บาท per kg, so the total revenue (TR) would be: TR = 25(x + y)

Since he sells all the oranges, the total revenue should equal the total cost price plus any profit or loss. However, the problem doesn't mention profit or loss, so I assume he is either breaking even or there's an implied relationship between the costs and selling price.

Wait, actually, the problem might be implying that he sells the mixture at 25 บาท/kg, which is between the two cost prices. Therefore, the ratio of the cheaper oranges (sweet oranges at 20 บาท/kg) to the more expensive ones (honey oranges at 27.50 บาท/kg) will determine the final selling price.

This sounds like a classic mixture problem where the selling price is the weighted average of the two cost prices. The formula for the ratio can be derived using the concept of alligation.

In alligation, the ratio of the two components is inversely proportional to the differences between the selling price and their respective cost prices.

So, let's calculate the differences:

  • Difference for honey oranges: 27.50 - 25 = 2.50 บาท
  • Difference for sweet oranges: 25 - 20 = 5 บาท

The ratio of honey oranges to sweet oranges should be the inverse of these differences. That is, the ratio is 5:2.5, which simplifies to 2:1 when divided by 2.5.

Therefore, the ratio of honey oranges to sweet oranges that Sompong bought is 2:1.

คำอธิบาย: สมปองซื้อส้มสำยน้ำผึ้งและส้มเขียวหวานในราคา 27.50 บาท/กก. และ 20 บาท/กก. ตามลำดับ และขายในราคากก.ละ 25 บาท เพื่อหาสัดส่วนของส้มทั้งสองชนิดที่ซื้อ เราใช้แนวคิดเรื่องการผสมส่วนผสม โดยคำนวณความแตกต่างระหว่างราคาขายและราคาต้นทุนสำหรับแต่ละชนิด:

  • ความแตกต่างสำหรับส้มสำยน้ำผึ้ง: 27.50 - 25 = 2.50 บาท
  • ความแตกต่างสำหรับส้มเขียวหวาน: 25 - 20 = 5 บาท

สัดส่วนของส้มสำยน้ำผึ้งต่อส้มเขียวหวานคืออัตราส่วนกลับของความแตกต่างนี้ ซึ่งคือ 5:2.5 หรือ 2:1 หลังจากทำให้เรียบง่าย

ดังนั้น สัดส่วนที่ถูกต้องคือ 2:1

{"correct_answer_key":"b"}