Thai Investment Consultant Licensing Exams - P2 - หลักสูตรความรู้เกี่ยวกับตราสารที่มีความซับซ้อน : ตราสารหนี้ และ กองทุนรวม - [77]

With answers from 54 AI models.

Back to Thai Investment Consultant Licensing Exams

Question

หุ้นกู้อนุพันธ์ทีจ่ายผลตอบแทนอ้างอิงกับดอกเบียในตลาดเงิน(interest rate-linked notes) มูลค่า 1000 บาทอายุ 1 ปี จ่ายผลตอบแทนปีละครัง โดยมีเงือนไขชําระหนีเมือครบกําหนดอายุสัญญา คือ จํานวนเงินทีได้รับชําระคืน = มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1% (10% - MLR เฉลีย) ] } ตัวเลือกใดแสดงจํานวนเงินทีจะได้รับชําระคืน เมือหุ้นกู้อนุพันธ์ครบกําหนดอายุสัญญาได้ถูกต้อง

  1. หาก MLR เฉลีย เท่ากับ 5% จะได้รับเงินสดคืน 1060 บาท
  2. หาก MLR เฉลีย เท่ากับ 6% จะได้รับเงินสดคืน 1060 บาท
  3. หาก MLR เฉลีย เท่ากับ 11% จะได้รับเงินสดคืน 1110 บาท
  4. หาก MLR เฉลีย เท่ากับ 12% จะได้รับเงินสดคืน 1010 บาท

Using dataset from ThaiExam Dataset.

Answers by AI

Let's solve this step by step:

The repayment formula is: Amount = Face Value + {Face Value × [max(1%, (10% - MLR average))]} Face Value = 1000 baht

Let's check each option:

For option D (MLR = 12%): 10% - 12% = -2% max(1%, -2%) = 1% Amount = 1000 + (1000 × 1%) = 1000 + 10 = 1010 baht

This matches option D, and it's the correct calculation. When MLR is higher than 10%, the formula uses the minimum 1% return. The other options don't follow the correct calculation pattern.

{"correct_answer_key":"d"}

This question is about an interest rate-linked note with a face value of 1,000 baht and a 1-year term. The repayment formula is:

Amount received = Face value + {Face value × [max(1%, (10% - average MLR))]}

Let's calculate each option:

a) If average MLR = 5%: Amount = 1,000 + {1,000 × [max(1%, (10% - 5%))]} = 1,000 + {1,000 × [max(1%, 5%)]} = 1,000 + {1,000 × 5%} = 1,000 + 50 = 1,050 baht (not 1,060)

b) If average MLR = 6%: Amount = 1,000 + {1,000 × [max(1%, (10% - 6%))]} = 1,000 + {1,000 × [max(1%, 4%)]} = 1,000 + {1,000 × 4%} = 1,000 + 40 = 1,040 baht (not 1,060)

c) If average MLR = 11%: Amount = 1,000 + {1,000 × [max(1%, (10% - 11%))]} = 1,000 + {1,000 × [max(1%, -1%)]} = 1,000 + {1,000 × 1%} = 1,000 + 10 = 1,010 baht (not 1,110)

d) If average MLR = 12%: Amount = 1,000 + {1,000 × [max(1%, (10% - 12%))]} = 1,000 + {1,000 × [max(1%, -2%)]} = 1,000 + {1,000 × 1%} = 1,000 + 10 = 1,010 baht

Option D is the only correct calculation.

{"correct_answer_key":"d"}

Let me understand the question about the interest rate-linked note.

The note has a face value of 1,000 Baht with a 1-year term.

The repayment formula is: Repayment Amount = Face Value + { Face Value x [max(1%, (10% - average MLR)) ] }

Let's analyze each option to find the correct answer:

a) If average MLR = 5%: Repayment Amount = 1,000 + {1,000 x [max(1%, (10% - 5%))]} = 1,000 + {1,000 x [max(1%, 5%)]} = 1,000 + {1,000 x 5%} = 1,000 + 50 = 1,050 Baht

The option states 1,060 Baht, which is incorrect.

b) If average MLR = 6%: Repayment Amount = 1,000 + {1,000 x [max(1%, (10% - 6%))]} = 1,000 + {1,000 x [max(1%, 4%)]} = 1,000 + {1,000 x 4%} = 1,000 + 40 = 1,040 Baht

The option states 1,060 Baht, which is incorrect.

c) If average MLR = 11%: Repayment Amount = 1,000 + {1,000 x [max(1%, (10% - 11%))]} = 1,000 + {1,000 x [max(1%, -1%)]} = 1,000 + {1,000 x 1%} = 1,000 + 10 = 1,010 Baht

The option states 1,110 Baht, which is incorrect.

d) If average MLR = 12%: Repayment Amount = 1,000 + {1,000 x [max(1%, (10% - 12%))]} = 1,000 + {1,000 x [max(1%, -2%)]} = 1,000 + {1,000 x 1%} = 1,000 + 10 = 1,010 Baht

The option states 1,010 Baht, which matches our calculation.

Therefore, option d is correct.

Wait, I should double-check my calculations to make sure.

a) If average MLR = 5%: 10% - 5% = 5% max(1%, 5%) = 5% 1,000 + (1,000 × 5%) = 1,000 + 50 = 1,050 Baht (not 1,060 as stated)

b) If average MLR = 6%: 10% - 6% = 4% max(1%, 4%) = 4% 1,000 + (1,000 × 4%) = 1,000 + 40 = 1,040 Baht (not 1,060 as stated)

c) If average MLR = 11%: 10% - 11% = -1% max(1%, -1%) = 1% 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 Baht (not 1,110 as stated)

d) If average MLR = 12%: 10% - 12% = -2% max(1%, -2%) = 1% 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 Baht (matches the stated amount)

So option d is correct.

Actually, let me look more carefully at this equation again: Repayment Amount = Face Value + { Face Value x [ max(1%, (10% - MLR average)) ] }

For option d, if MLR average = 12%: 10% - 12% = -2% max(1%, -2%) = 1% Face Value + {Face Value x 1%} = 1,000 + 10 = 1,010 Baht

This matches option d, which states that if the MLR average is 12%, the repayment amount is 1,010 Baht.

So the correct answer is option d.

This question is about calculating the repayment amount for an interest rate-linked note. According to the formula:

Repayment Amount = Face Value + { Face Value × [max(1%, (10% - average MLR)) ] }

Let me check each option:

a) If MLR = 5%: 1000 + 1000×max(1%, 5%) = 1000 + 50 = 1050 (not 1060) b) If MLR = 6%: 1000 + 1000×max(1%, 4%) = 1000 + 40 = 1040 (not 1060) c) If MLR = 11%: 1000 + 1000×max(1%, -1%) = 1000 + 10 = 1010 (not 1110) d) If MLR = 12%: 1000 + 1000×max(1%, -2%) = 1000 + 10 = 1010 ✓

{"correct_answer_key":"d"}

Let me analyze this interest rate-linked note problem step by step.

The formula given is: Amount received = Face value + {Face value × [max(1%, (10% - Average MLR))]}

Where face value = 1,000 baht

Let me calculate for each option:

a) If average MLR = 5%:

  • (10% - 5%) = 5%
  • max(1%, 5%) = 5%
  • Amount = 1,000 + (1,000 × 5%) = 1,000 + 50 = 1,050 baht
  • The option states 1,060 baht, which is incorrect.

b) If average MLR = 6%:

  • (10% - 6%) = 4%
  • max(1%, 4%) = 4%
  • Amount = 1,000 + (1,000 × 4%) = 1,000 + 40 = 1,040 baht
  • The option states 1,060 baht, which is incorrect.

c) If average MLR = 11%:

  • (10% - 11%) = -1%
  • max(1%, -1%) = 1%
  • Amount = 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 baht
  • The option states 1,110 baht, which is incorrect.

d) If average MLR = 12%:

  • (10% - 12%) = -2%
  • max(1%, -2%) = 1%
  • Amount = 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 baht
  • The option states 1,010 baht, which is correct.
{"correct_answer_key": "d"}

This is a question about interest rate-linked notes in Thai. Let me translate and understand the problem:

The question is about derivative bonds that pay returns based on money market interest rates (interest rate-linked notes) with:

  • Face value: 1000 baht
  • Maturity: 1 year
  • Annual payment
  • Payment condition at maturity: Amount received = Face value + {Face value × [max(1%, (10% - average MLR))]}

Where MLR is the Minimum Lending Rate.

So the formula is: Payment = 1000 + 1000 × max(1%, (10% - average MLR))

Let me check each option:

a) If average MLR = 5%: max(1%, (10% - 5%)) = max(1%, 5%) = 5% Payment = 1000 + 1000 × 5% = 1000 + 50 = 1050 baht The option says 1060 baht - INCORRECT

b) If average MLR = 6%: max(1%, (10% - 6%)) = max(1%, 4%) = 4% Payment = 1000 + 1000 × 4% = 1000 + 40 = 1040 baht The option says 1060 baht - INCORRECT

c) If average MLR = 11%: max(1%, (10% - 11%)) = max(1%, -1%) = 1% Payment = 1000 + 1000 × 1% = 1000 + 10 = 1010 baht The option says 1110 baht - INCORRECT

d) If average MLR = 12%: max(1%, (10% - 12%)) = max(1%, -2%) = 1% Payment = 1000 + 1000 × 1% = 1000 + 10 = 1010 baht The option says 1010 baht - CORRECT

I analyze the bond's payment mechanism by calculating returns under different MLR scenarios. When MLR exceeds 10%, the payment is capped at 1% above face value. Option d accurately reflects this calculation, making it the precise solution to the problem.

Looking at this interest rate-linked note with face value of 1000 baht, the payment formula at maturity is: Payment = Face value + {Face value × [max(1%, (10% - average MLR))]}

Let me calculate each option:

a) MLR = 5%: max(1%, 5%) = 5% → 1000 + (1000 × 5%) = 1050 baht ≠ 1060 b) MLR = 6%: max(1%, 4%) = 4% → 1000 + (1000 × 4%) = 1040 baht ≠ 1060
c) MLR = 11%: max(1%, -1%) = 1% → 1000 + (1000 × 1%) = 1010 baht ≠ 1110 d) MLR = 12%: max(1%, -2%) = 1% → 1000 + (1000 × 1%) = 1010 baht = 1010 ✓

When MLR exceeds 10%, the formula uses the minimum 1% rate, resulting in a payment of 1010 baht.

{"correct_answer_key":"d"}

Let me analyze this interest rate-linked note step by step.

The formula given is: Amount received = Face value + {Face value × [max(1%, (10% - Average MLR))]}

Where face value = 1000 baht

Let me check each option:

Option A: MLR average = 5%

  • max(1%, (10% - 5%)) = max(1%, 5%) = 5%
  • Amount = 1000 + (1000 × 5%) = 1000 + 50 = 1050 baht
  • Option says 1060 baht → Incorrect

Option B: MLR average = 6%

  • max(1%, (10% - 6%)) = max(1%, 4%) = 4%
  • Amount = 1000 + (1000 × 4%) = 1000 + 40 = 1040 baht
  • Option says 1060 baht → Incorrect

Option C: MLR average = 11%

  • max(1%, (10% - 11%)) = max(1%, -1%) = 1%
  • Amount = 1000 + (1000 × 1%) = 1000 + 10 = 1010 baht
  • Option says 1110 baht → Incorrect

Option D: MLR average = 12%

  • max(1%, (10% - 12%)) = max(1%, -2%) = 1%
  • Amount = 1000 + (1000 × 1%) = 1000 + 10 = 1010 baht
  • Option says 1010 baht → Correct
{"correct_answer_key":"d"}

Let me understand this question step by step. This is about interest rate-linked notes in Thai.

The formula given is: Amount received = Face value + {Face value x [max(1%, (10% - average MLR))]}

Face value = 1000 baht Term = 1 year

Let me check each option:

a) If average MLR = 5% max(1%, (10% - 5%)) = max(1%, 5%) = 5% Amount = 1000 + (1000 x 5%) = 1000 + 50 = 1050 baht But the option says 1060 baht, so this is incorrect.

b) If average MLR = 6% max(1%, (10% - 6%)) = max(1%, 4%) = 4% Amount = 1000 + (1000 x 4%) = 1000 + 40 = 1040 baht But the option says 1060 baht, so this is incorrect.

c) If average MLR = 11% max(1%, (10% - 11%)) = max(1%, -1%) = 1% Amount = 1000 + (1000 x 1%) = 1000 + 10 = 1010 baht But the option says 1110 baht, so this is incorrect.

d) If average MLR = 12% max(1%, (10% - 12%)) = max(1%, -2%) = 1% Amount = 1000 + (1000 x 1%) = 1000 + 10 = 1010 baht The option says 1010 baht, so this matches!

Let me double-check option d: MLR = 12% 10% - 12% = -2%

When comparing -2% with 1%, the higher value prevails, confirming the 1% calculation. This validates the final amount of 1010 baht for option d.

This question is about interest rate-linked notes with a specific payout formula. Let me calculate each option using the given formula:

Amount received = Face value + {Face value × [max(1%, (10% - average MLR))]}

Where face value = 1000 baht

Checking each option:

  • Option a: MLR = 5% → max(1%, 5%) = 5% → 1000 + (1000 × 5%) = 1050 baht (not 1060)
  • Option b: MLR = 6% → max(1%, 4%) = 4% → 1000 + (1000 × 4%) = 1040 baht (not 1060)
  • Option c: MLR = 11% → max(1%, -1%) = 1% → 1000 + (1000 × 1%) = 1010 baht (not 1110)
  • Option d: MLR = 12% → max(1%, -2%) = 1% → 1000 + (1000 × 1%) = 1010 baht ✓
{"correct_answer_key":"d"}

To determine the correct answer, we need to calculate the amount received based on the given formula for each option:

Formula:
จำนวนเงินที่ได้รับชำระคืน = มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ] }

Given:
มูลค่าทีตราไว้ = 1000 บาท

Let's evaluate each option:

Option A: MLR เฉลี่ย = 5%

  • 10% - 5% = 5%
  • max(1%, 5%) = 5%
  • จำนวนเงินที่ได้รับ = 1000 + (1000 x 5%) = 1000 + 50 = 1050 บาท
    (Option A states 1060 บาท, which is incorrect.)

Option B: MLR เฉลี่ย = 6%

  • 10% - 6% = 4%
  • max(1%, 4%) = 4%
  • จำนวนเงินที่ได้รับ = 1000 + (1000 x 4%) = 1000 + 40 = 1040 บาท
    (Option B states 1060 บาท, which is incorrect.)

Option C: MLR เฉลี่ย = 11%

  • 10% - 11% = -1%
  • max(1%, -1%) = 1%
  • จำนวนเงินที่ได้รับ = 1000 + (1000 x 1%) = 1000 + 10 = 1010 บาท
    (Option C states 1110 บาท, which is incorrect.)

Option D: MLR เฉลี่ย = 12%

  • 10% - 12% = -2%
  • max(1%, -2%) = 1%
  • จำนวนเงินที่ได้รับ = 1000 + (1000 x 1%) = 1000 + 10 = 1010 บาท
    (Option D states 1010 บาท, which is correct.)

Correct Answer:

{"correct_answer_key":"d"}

Explanation:

The question describes an interest rate-linked note with the following terms:

  • Face value (มูลค่าที่ตราไว้): 1,000 THB
  • Maturity: 1 year
  • Payout formula:
    • Repayment amount = Face value + { Face value × [ max(1%, (10% - MLR เฉลี่ย)) ] }
    • This means the investor earns the greater of 1% or (10% - MLR เฉลี่ย) on the face value.

Key Observations:

  1. If (10% - MLR เฉลี่ย) > 1%, the payout is based on (10% - MLR เฉลี่ย).
  2. If (10% - MLR เฉลี่ย) ≤ 1%, the payout defaults to 1% (minimum return).

Evaluating Each Option:

  • Option A (MLR เฉลี่ย = 5%):

    • (10% - 5%) = 5% > 1% → Payout = 1,000 + (1,000 × 5%) = 1,050 THB (not 1,060 THB). Incorrect.
  • Option B (MLR เฉลี่ย = 6%):

    • (10% - 6%) = 4% > 1% → Payout = 1,000 + (1,000 × 4%) = 1,040 THB (not 1,060 THB). Incorrect.
  • Option C (MLR เฉลี่ย = 11%):

    • (10% - 11%) = -1% → max(1%, -1%) = 1% → Payout = 1,000 + (1,000 × 1%) = 1,010 THB (not 1,110 THB). Incorrect.
  • Option D (MLR เฉลี่ย = 12%):

    • (10% - 12%) = -2% → max(1%, -2%) = 1% → Payout = 1,000 + (1,000 × 1%) = 1,010 THB. Correct.

Correct Answer:

{"correct_answer_key":"d"}

The question involves calculating the repayment amount for a derivative bond with a face value of 1000 baht and a 1-year maturity. The repayment formula is:

[ \text{Repayment} = \text{Face value} + \left{ \text{Face value} \times \max\left(1%, (10% - \text{Average MLR})\right) \right} ]

where:

  • Face value is 1000 baht.
  • (\max(1%, (10% - \text{Average MLR}))) determines the interest rate applied, taking the greater of 1% or (10% minus the average MLR).
  • MLR (Minimum Loan Rate) is an interest rate index, and "เฉลีย" (average) indicates the average MLR over the relevant period.

The options provide different average MLR values and claimed repayment amounts. The correct option must match the calculated repayment using the formula.

Evaluation of Options:

  • Option a: Average MLR = 5%
    Calculation:
    (\max(1%, (10% - 5%)) = \max(1%, 5%) = 5%)
    Repayment = (1000 + 1000 \times 5% = 1000 + 50 = 1050) baht
    Claimed repayment is 1060 baht → Incorrect (1050 ≠ 1060).

  • Option b: Average MLR = 6%
    Calculation:
    (\max(1%, (10% - 6%)) = \max(1%, 4%) = 4%)
    Repayment = (1000 + 1000 \times 4% = 1000 + 40 = 1040) baht
    Claimed repayment is 1060 baht → Incorrect (1040 ≠ 1060).

  • Option c: Average MLR = 11%
    Calculation:
    (\max(1%, (10% - 11%)) = \max(1%, -1%) = 1%) (since 1% > -1%)
    Repayment = (1000 + 1000 \times 1% = 1000 + 10 = 1010) baht
    Claimed repayment is 1110 baht → Incorrect (1010 ≠ 1110).

  • Option d: Average MLR = 12%
    Calculation:
    (\max(1%, (10% - 12%)) = \max(1%, -2%) = 1%) (since 1% > -2%)
    Repayment = (1000 + 1000 \times 1% = 1000 + 10 = 1010) baht
    Claimed repayment is 1010 baht → Correct (1010 = 1010).

Only option d correctly matches the calculated repayment amount based on the given formula.

{"correct_answer_key": "d"}

This question asks about an interest rate-linked note with a face value of 1000 baht and a maturity of 1 year. The repayment at maturity is calculated as:

Repayment = Face Value + {Face Value * [max(1%, (10% - Average MLR))]}.

Let's analyze each option:

  • a) Average MLR = 5%: Repayment = 1000 + {1000 * [max(1%, (10% - 5%))]} = 1000 + {1000 * [max(1%, 5%)]} = 1000 + (1000 * 5%) = 1000 + 50 = 1050 baht. This contradicts the option stating 1060 baht.

  • b) Average MLR = 6%: Repayment = 1000 + {1000 * [max(1%, (10% - 6%))]} = 1000 + {1000 * [max(1%, 4%)]} = 1000 + (1000 * 4%) = 1000 + 40 = 1040 baht. This contradicts the option stating 1060 baht.

  • c) Average MLR = 11%: Repayment = 1000 + {1000 * [max(1%, (10% - 11%))]} = 1000 + {1000 * [max(1%, -1%)]} = 1000 + (1000 * 1%) = 1000 + 10 = 1010 baht. This contradicts the option stating 1110 baht.

  • d) Average MLR = 12%: Repayment = 1000 + {1000 * [max(1%, (10% - 12%))]} = 1000 + {1000 * [max(1%, -2%)]} = 1000 + (1000 * 1%) = 1000 + 10 = 1010 baht. This matches the option.

Therefore, the correct answer is d.

{"correct_answer_key": "d"}

Let's analyze the formula: Amount Received = Face Value + { Face Value x [ max(1%, (10% - Average MLR)) ] } Face Value is 1000.

  • Option a: MLR = 5%. Amount = 1000 + {1000 x [max(1%, (10% - 5%))] } = 1000 + {1000 x [max(1%, 5%)]} = 1000 + {1000 x 5%} = 1000 + 50 = 1050. This contradicts the statement of 1060.

  • Option b: MLR = 6%. Amount = 1000 + {1000 x [max(1%, (10% - 6%))] } = 1000 + {1000 x [max(1%, 4%)]} = 1000 + {1000 x 4%} = 1000 + 40 = 1040. This contradicts the statement of 1060.

  • Option c: MLR = 11%. Amount = 1000 + {1000 x [max(1%, (10% - 11%))] } = 1000 + {1000 x [max(1%, -1%)]} = 1000 + {1000 x 1%} = 1000 + 10 = 1010. This contradicts the statement of 1110.

  • Option d: MLR = 12%. Amount = 1000 + {1000 x [max(1%, (10% - 12%))] } = 1000 + {1000 x [max(1%, -2%)]} = 1000 + {1000 x 1%} = 1000 + 10 = 1010. This matches the statement of 1010.

{"correct_answer_key":"d"}

Let's break down the calculation for the amount received at maturity:

  • Principal: 1000 baht
  • Interest Calculation: 1000 * [max(1%, (10% - MLR average))]

Now let's analyze each option:

  • a) MLR = 5%: Interest = 1000 * [max(1%, (10% - 5%))] = 1000 * [max(1%, 5%)] = 1000 * 0.05 = 50 baht. Total received = 1000 + 50 = 1050 baht. This option is incorrect.
  • b) MLR = 6%: Interest = 1000 * [max(1%, (10% - 6%))] = 1000 * [max(1%, 4%)] = 1000 * 0.04 = 40 baht. Total received = 1000 + 40 = 1040 baht. This option is incorrect.
  • c) MLR = 11%: Interest = 1000 * [max(1%, (10% - 11%))] = 1000 * [max(1%, -1%)] = 1000 * 0.01 = 10 baht. Total received = 1000 + 10 = 1010 baht. This option is incorrect.
  • d) MLR = 12%: Interest = 1000 * [max(1%, (10% - 12%))] = 1000 * [max(1%, -2%)] = 1000 * 0.01 = 10 baht. Total received = 1000 + 10 = 1010 baht. This option is correct.
{"correct_answer_key":"d"}

The question describes an interest rate-linked note with a face value of 1000 Baht. The payoff at maturity is calculated using the formula: Payoff = Face Value + { Face Value x [ max(1%, (10% - Average MLR)) ] }

Let's test each option:

  • Option A: If Average MLR = 5% (0.05) Payoff = 1000 + { 1000 x [ max(0.01, (0.10 - 0.05)) ] } Payoff = 1000 + { 1000 x [ max(0.01, 0.05) ] } Payoff = 1000 + { 1000 x 0.05 } = 1000 + 50 = 1050 Baht. Option A states 1060 Baht, so it's incorrect.

  • Option B: If Average MLR = 6% (0.06) Payoff = 1000 + { 1000 x [ max(0.01, (0.10 - 0.06)) ] } Payoff = 1000 + { 1000 x [ max(0.01, 0.04) ] } Payoff = 1000 + { 1000 x 0.04 } = 1000 + 40 = 1040 Baht. Option B states 1060 Baht, so it's incorrect.

  • Option C: If Average MLR = 11% (0.11) Payoff = 1000 + { 1000 x [ max(0.01, (0.10 - 0.11)) ] } Payoff = 1000 + { 1000 x [ max(0.01, -0.01) ] } Payoff = 1000 + { 1000 x 0.01 } = 1000 + 10 = 1010 Baht. Option C states 1110 Baht, so it's incorrect.

  • Option D: If Average MLR = 12% (0.12) Payoff = 1000 + { 1000 x [ max(0.01, (0.10 - 0.12)) ] } Payoff = 1000 + { 1000 x [ max(0.01, -0.02) ] } Payoff = 1000 + { 1000 x 0.01 } = 1000 + 10 = 1010 Baht. Option D states 1010 Baht, which matches the calculation.

{"correct_answer_key":"d"}

The question describes a derivative bond (interest rate-linked note) with a face value of 1000 Baht and a 1-year maturity. The payoff at maturity is calculated as:

Amount Received = Face Value + { Face Value x [ max(1%, (10% - Average MLR)) ] }

Let's break down the formula and test each option:

  • Face Value (มูลค่าที่ตราไว้) = 1000 บาท

The variable part of the return is max(1%, (10% - Average MLR)). This means the minimum additional return is 1% of the face value, and the maximum is determined by 10% - Average MLR, but it cannot go below 1%.

Let's evaluate each option:

a) หาก MLR เฉลี่ย เท่ากับ 5% จะได้รับเงินสดคืน 1060 บาท

  • max(1%, (10% - 5%)) = max(1%, 5%) = 5%
  • Amount Received = 1000 + { 1000 x 5% } = 1000 + 50 = 1050 บาท
  • This option states 1060 Baht, which is incorrect.

b) หาก MLR เฉลี่ย เท่ากับ 6% จะได้รับเงินสดคืน 1060 บาท

  • max(1%, (10% - 6%)) = max(1%, 4%) = 4%
  • Amount Received = 1000 + { 1000 x 4% } = 1000 + 40 = 1040 บาท
  • This option states 1060 Baht, which is incorrect.

c) หาก MLR เฉลี่ย เท่ากับ 11% จะได้รับเงินสดคืน 1110 บาท

  • max(1%, (10% - 11%)) = max(1%, -1%) = 1% (because the return cannot be less than 1%)
  • Amount Received = 1000 + { 1000 x 1% } = 1000 + 10 = 1010 บาท
  • This option states 1110 Baht, which is incorrect.

d) หาก MLR เฉลี่ย เท่ากับ 12% จะได้รับเงินสดคืน 1010 บาท

  • max(1%, (10% - 12%)) = max(1%, -2%) = 1% (because the return cannot be less than 1%)
  • Amount Received = 1000 + { 1000 x 1% } = 1000 + 10 = 1010 บาท
  • This option states 1010 Baht, which is correct.
{"correct_answer_key":"d"}

The repayment amount is calculated using the formula: Total Repayment = Face Value + {Face Value x [max(1%, (10% - Average MLR))]}. We test option D where the Average MLR is 12%. The interest rate is max(1%, (10% - 12%)) = max(1%, -2%), which equals 1%. The interest earned is 1000 Baht * 1% = 10 Baht. Therefore, the total repayment is 1000 (face value) + 10 (interest) = 1010 Baht. This matches option D.

{"correct_answer_key":"d"}

The question describes an interest rate-linked note with a specific repayment formula. Let's break down the formula and test each option:

Repayment = Face Value + (Face Value * max(1%, (10% - Average MLR)))

Face Value = 1000 Baht

  • Option a: MLR = 5% Repayment = 1000 + (1000 * max(1%, (10% - 5%))) Repayment = 1000 + (1000 * max(1%, 5%)) Repayment = 1000 + (1000 * 5%) Repayment = 1000 + 50 Repayment = 1050 Baht. This is incorrect.

  • Option b: MLR = 6% Repayment = 1000 + (1000 * max(1%, (10% - 6%))) Repayment = 1000 + (1000 * max(1%, 4%)) Repayment = 1000 + (1000 * 4%) Repayment = 1000 + 40 Repayment = 1040 Baht. This is incorrect.

  • Option c: MLR = 11% Repayment = 1000 + (1000 * max(1%, (10% - 11%))) Repayment = 1000 + (1000 * max(1%, -1%)) Repayment = 1000 + (1000 * 1%) Repayment = 1000 + 10 Repayment = 1010 Baht. This is incorrect.

  • Option d: MLR = 12% Repayment = 1000 + (1000 * max(1%, (10% - 12%))) Repayment = 1000 + (1000 * max(1%, -2%)) Repayment = 1000 + (1000 * 1%) Repayment = 1000 + 10 Repayment = 1010 Baht. This is correct.

{"correct_answer_key":"d"}

คำอธิบาย:
สูตรการคำนวณเงินที่ได้รับคืน = 1,000 + [1,000 × max(1%, (10% - MLR เฉลี่ย))]

  • ถ้า (10% - MLR เฉลี่ย) < 1% ให้ใช้ 1%
  • ถ้า (10% - MLR เฉลี่ย) > 1% ให้ใช้ค่านั้น

ลองคำนวณแต่ละตัวเลือก:
a) MLR เฉลี่ย 5% → (10%-5%) = 5% > 1% → ได้ 1,000 + (1,000×5%) = 1,050 บาท (ไม่ใช่ 1,060)
b) MLR เฉลี่ย 6% → (10%-6%) = 4% > 1% → ได้ 1,000 + (1,000×4%) = 1,040 บาท (ไม่ใช่ 1,060)
c) MLR เฉลี่ย 11% → (10%-11%) = -1% < 1% → ใช้ 1% → ได้ 1,000 + (1,000×1%) = 1,010 บาท (ไม่ใช่ 1,110)
d) MLR เฉลี่ย 12% → (10%-12%) = -2% < 1% → ใช้ 1% → ได้ 1,000 + (1,000×1%) = 1,010 บาท (ถูกต้อง)

ดังนั้น ตัวเลือกที่ถูกต้องคือ d

{"correct_answer_key":"d"}

คำอธิบาย:
สูตรการคำนวณเงินที่ได้รับชำระคืนคือ
มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ] }
โดยมูลค่าที่ตราไว้ = 1000 บาท

เราจะคำนวณแต่ละกรณี:

  • กรณี MLR = 5%
    10% - 5% = 5% > 1%
    ดังนั้นใช้ 5%
    เงินคืน = 1000 + 1000 x 5% = 1000 + 50 = 1050 บาท (ไม่ใช่ 1060)

  • กรณี MLR = 6%
    10% - 6% = 4% > 1%
    เงินคืน = 1000 + 1000 x 4% = 1040 บาท (ไม่ใช่ 1060)

  • กรณี MLR = 11%
    10% - 11% = -1% < 1%
    ใช้ 1%
    เงินคืน = 1000 + 1000 x 1% = 1010 บาท (ไม่ใช่ 1110)

  • กรณี MLR = 12%
    10% - 12% = -2% < 1%
    ใช้ 1%
    เงินคืน = 1000 + 1000 x 1% = 1010 บาท (ตรงกับตัวเลือก d)

ดังนั้น ตัวเลือกที่ถูกต้องคือ d.

{"correct_answer_key":"d"}

คำอธิบาย: สัญญาหุ้นกู้อนุพันธ์นี้จ่ายผลตอบแทนตามอัตราดอกเบี้ยตลาด (MLR เฉลี่ย) โดยมีสูตรคำนวณเงินคืนคือ มูลค่าที่ตราไว้ (1000 บาท) บวกกับผลต่างของอัตราดอกเบี้ยสูงสุดระหว่าง 1% กับ (10% - MLR เฉลี่ย) คูณด้วยมูลค่าที่ตราไว้ ถ้า MLR เฉลี่ย ต่ำกว่า 10% ผลตอบแทนจะเป็น 1000 + 1000 x (max(1%, 10% - MLR เฉลี่ย)) ซึ่งจะได้ผลต่างตามแต่ค่า MLR เฉลี่ย

  • เมื่อ MLR เฉลี่ย = 5%: ผลต่าง = max(1%, 10%-5%) = max(1%, 5%) = 5%; เงินคืน = 1000 + 1000 x 0.05 = 1050 บาท
  • เมื่อ MLR เฉลี่ย = 6%: ผลต่าง = max(1%, 10%-6%) = max(1%, 4%) = 4%; เงินคืน = 1000 + 1000 x 0.04 = 1040 บาท
  • เมื่อ MLR เฉลี่ย = 11%: ผลต่าง = max(1%, 10%-11%) = max(1%, -1%) = 1%; เงินคืน = 1000 + 1000 x 0.01 = 1010 บาท
  • เมื่อ MLR เฉลี่ย = 12%: ผลต่าง = max(1%, 10%-12%) = max(1%, -2%) = 1%; เงินคืน = 1000 + 1000 x 0.01 = 1010 บาท

ดังนั้น คำตอบที่ถูกต้องคือ ตัวเลือก D

{"correct_answer_key":"d"}

ก่อนอื่น เรามาวิเคราะห์เงื่อนไขการชำระคืนกันก่อน:

สูตรที่โจทย์ให้มา คือ:
จำนวนเงินที่ได้รับชำระคืน = มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ × [max(1%, (10% - MLR เฉลี่ย))] }

มูลค่าที่ตราไว้ = 1,000 บาท

ลองตรวจสอบแต่ละตัวเลือก:

  • ตัวเลือก a: MLR เฉลี่ย = 5%
    (10% - 5%) = 5% ซึ่งมากกว่า 1% ดังนั้นใช้ 5%
    เงินที่ได้รับคืน = 1,000 + (1,000 × 5%) = 1,000 + 50 = 1,050 บาท (ไม่ใช่ 1,060 บาท)

  • ตัวเลือก b: MLR เฉลี่ย = 6%
    (10% - 6%) = 4% ซึ่งมากกว่า 1% ดังนั้นใช้ 4%
    เงินที่ได้รับคืน = 1,000 + (1,000 × 4%) = 1,000 + 40 = 1,040 บาท (ไม่ใช่ 1,060 บาท)

  • ตัวเลือก c: MLR เฉลี่ย = 11%
    (10% - 11%) = -1% ซึ่งน้อยกว่า 1% ดังนั้นใช้ 1% (เพราะ max(1%, -1%) = 1%)
    เงินที่ได้รับคืน = 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 บาท (ไม่ใช่ 1,110 บาท)

  • ตัวเลือก d: MLR เฉลี่ย = 12%
    (10% - 12%) = -2% ซึ่งน้อยกว่า 1% ดังนั้นใช้ 1%
    เงินที่ได้รับคืน = 1,000 + (1,000 × 1%) = 1,000 + 10 = 1,010 บาท (ถูกต้อง)

ดังนั้น ตัวเลือกที่ถูกต้องคือข้อ d

{"correct_answer_key":"d"}

ในการคำนวณจำนวนเงินที่ได้รับชำระคืนเมื่อหุ้นกู้อนุพันธ์ครบกำหนดอายุสัญญา เราจะใช้สูตร:

[ \text{จำนวนเงินที่ได้รับชำระคืน} = \text{มูลค่าที่ตราไว้} + \left( \text{มูลค่าที่ตราไว้} \times \max(1%, (10% - \text{MLR เฉลี่ย})) \right) ]

มูลค่าที่ตราไว้คือ 1000 บาท

  • ตัวเลือก A: หาก MLR เฉลี่ยเท่ากับ 5%, (\max(1%, (10% - 5%)) = 5%), ดังนั้นจำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 \times 5%) = 1050 บาท
  • ตัวเลือก B: หาก MLR เฉลี่ยเท่ากับ 6%, (\max(1%, (10% - 6%)) = 4%), ดังนั้นจำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 \times 4%) = 1040 บาท
  • ตัวเลือก C: หาก MLR เฉลี่ยเท่ากับ 11%, (\max(1%, (10% - 11%)) = 1%), ดังนั้นจำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 \times 1%) = 1010 บาท
  • ตัวเลือก D: หาก MLR เฉลี่ยเท่ากับ 12%, (\max(1%, (10% - 12%)) = 1%), ดังนั้นจำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 \times 1%) = 1010 บาท

ดังนั้น ตัวเลือกที่ถูกต้องคือ D

{"correct_answer_key":"d"}

ในการคำนวณจำนวนเงินที่ได้รับคืนเมื่อหุ้นกู้อนุพันธ์ครบกำหนดอายุสัญญา เราจะใช้สูตรที่ให้ไว้ในคำถาม:

จำนวนเงินที่ได้รับคืน = มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ] }

โดยที่มูลค่าที่ตราไว้คือ 1000 บาท

  1. หาก MLR เฉลี่ย เท่ากับ 5%:

    • max(1%, (10% - 5%)) = max(1%, 5%) = 5%
    • จำนวนเงินที่ได้รับคืน = 1000 + (1000 x 0.05) = 1000 + 50 = 1050 บาท
  2. หาก MLR เฉลี่ย เท่ากับ 6%:

    • max(1%, (10% - 6%)) = max(1%, 4%) = 4%
    • จำนวนเงินที่ได้รับคืน = 1000 + (1000 x 0.04) = 1000 + 40 = 1040 บาท
  3. หาก MLR เฉลี่ย เท่ากับ 11%:

    • max(1%, (10% - 11%)) = max(1%, -1%) = 1%
    • จำนวนเงินที่ได้รับคืน = 1000 + (1000 x 0.01) = 1000 + 10 = 1010 บาท
  4. หาก MLR เฉลี่ย เท่ากับ 12%:

    • max(1%, (10% - 12%)) = max(1%, -2%) = 1%
    • จำนวนเงินที่ได้รับคืน = 1000 + (1000 x 0.01) = 1000 + 10 = 1010 บาท

จากการคำนวณข้างต้น ตัวเลือกที่ถูกต้องคือ "หาก MLR เฉลี่ย เท่ากับ 5% จะได้รับเงินสดคืน 1060 บาท" ซึ่งไม่ถูกต้องตามการคำนวณที่ทำ แต่ตัวเลือกที่ถูกต้องคือ "หาก MLR เฉลี่ย เท่ากับ 11% จะได้รับเงินสดคืน 1010 บาท" ซึ่งตรงกับการคำนวณ

ดังนั้นคำตอบที่ถูกต้องคือ:

{"correct_answer_key":"d"}

Let's calculate the amount to be received at maturity based on the given formula for the interest rate-linked notes. The formula is:

Amount received at maturity = Face Value + { Face Value × [ max(1%, (10% - Average MLR)) ] }

Here, the face value is 1000 Baht. We need to evaluate each option by plugging in the given Average MLR values and checking the resulting amount.

  • Option A: MLR = 5%
    max(1%, (10% - 5%)) = max(1%, 5%) = 5%
    Amount = 1000 + (1000 × 5%) = 1000 + 50 = 1050 Baht
    (Incorrect, as the option states 1060 Baht)

  • Option B: MLR = 6%
    max(1%, (10% - 6%)) = max(1%, 4%) = 4%
    Amount = 1000 + (1000 × 4%) = 1000 + 40 = 1040 Baht
    (Incorrect, as the option states 1060 Baht)

  • Option C: MLR = 11%
    max(1%, (10% - 11%)) = max(1%, -1%) = 1%
    Amount = 1000 + (1000 × 1%) = 1000 + 10 = 1010 Baht
    (Incorrect, as the option states 1110 Baht)

  • Option D: MLR = 12%
    max(1%, (10% - 12%)) = max(1%, -2%) = 1%
    Amount = 1000 + (1000 × 1%) = 1000 + 10 = 1010 Baht
    (Correct, as the option states 1010 Baht)

Thus, the correct answer is option D.

{"correct_answer_key":"d"}

First, the user has provided another multiple-choice question in JSON format. I need to follow the same pattern as before: provide a brief explanation, then respond in JSON with the "correct_answer_key".

The question is in Thai, and it seems to be about financial instruments, specifically interest rate-linked notes. Let me translate and understand it.

The question describes: "Interest rate-linked notes with a value of 1000 Baht, 1-year term, pays returns annually. The repayment condition at maturity is: Amount received = Face value + { Face value x [ max(1%, (10% - Average MLR)) ] }"

MLR probably stands for Market Lending Rate or something similar.

So, the formula for the amount received at maturity is:

Amount = 1000 + {1000 x [max(1%, (10% - Average MLR))]}

Simplifying, Amount = 1000 * (1 + max(1%, (10% - Average MLR)))

More precisely: Amount = 1000 + [1000 * max(1%, (10% - Average MLR))] = 1000 * [1 + max(1%, (10% - Average MLR))]

Now, the options are:

a: If average MLR = 5%, receive 1060 Baht

b: If average MLR = 6%, receive 1060 Baht

c: If average MLR = 11%, receive 1110 Baht

d: If average MLR = 12%, receive 1010 Baht

I need to calculate for each scenario what the actual amount should be and see which one matches.

Let’s denote:

Let r = average MLR

Then, additional return = max(1%, (10% - r))

So, Total Amount = 1000 + [1000 * max(1%, (10% - r))]

Or, Total Amount = 1000 * [1 + max(1%, (10% - r))]

First, for option a: r = 5%

10% - r = 10% - 5% = 5%

max(1%, 5%) = 5%

So, Amount = 1000 + (1000 * 5%) = 1000 + (1000 * 0.05) = 1000 + 50 = 1050 Baht

But option a says 1060 Baht. That's not matching. So, a is incorrect.

Option a claims 1060, but calculation shows 1050. So, wrong.

For option b: r = 6%

10% - r = 10% - 6% = 4%

max(1%, 4%) = 4% (since 4% > 1%)

Amount = 1000 + (1000 * 4%) = 1000 + 40 = 1040 Baht

Option b says 1060 Baht. Not matching. So, b is incorrect.

For option c: r = 11%

10% - r = 10% - 11% = -1%

max(1%, -1%) = 1% (since 1% > -1%)

Amount = 1000 + (1000 * 1%) = 1000 + 10 = 1010 Baht

Option c says 1110 Baht. That's not matching. I got 1010, but it says 1110. So, c is incorrect.

That can't be right. Let me double-check the formula.

The formula is: Amount = Face value + { Face value x [ max(1%, (10% - MLR)) ] }

For r=11%, max(1%, (10%-11%)) = max(1%, -1%) = 1%

So, 1000 + (1000 * 0.01) = 1000 + 10 = 1010

But option c says 1110, which is wrong.

For option d: r = 12%

10% - r = 10% - 12% = -2%

max(1%, -2%) = 1%

Amount = 1000 + (1000 * 1%) = 1000 + 10 = 1010 Baht

Option d says 1010 Baht. That matches!

Option d: "หาก MLR เฉลีย เท่ากับ 12% จะได้รับเงินสดคืน 1010 บาท" which is "If average MLR = 12%, receive 1010 Baht"

Yes, my calculation for d is exactly 1010.

But earlier for c, I calculated 1010, but option c says 1110, which is incorrect, so c is wrong.

The question is to find which option is correct, meaning which statement is true.

So, for a: Calculated 1050, but says 1060 → false

b: Calculated 1040, but says 1060 → false

c: Calculated 1010, but says 1110 → false

d: Calculated 1010, and says 1010 → true

So, d is the correct one.

Is that right? For c, with r=11%, amount=1010, but option c claims 1110, which is wrong, so the statement in c is incorrect.

Yes.

Perhaps I misread the formula. Let me double-check the original question.

"จํานวนเงินทีได้รับชําระคืน = มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1% (10% - MLR เฉลีย) ] }"

It's written as: max(1% (10% - MLR เฉลีย)

In the text: "max(1% (10% - MLR เฉลีย)"

It might be max(1%, (10% - MLR)) which is what I assumed.

Perhaps it's max(1%, 10% - MLR), yes.

Another way: in the text, it's "max(1% (10% - MLR เฉลีย)", which might be missing a comma, but I think it's max(1%, (10% - MLR)).

Assuming that's correct.

So, yes, for d, it matches.

Therefore, the correct answer is d.

Now, to respond: Provide a brief explanation, then respond in JSON with {"correct_answer_key":"d"}

Brief explanation: For MLR = 12%, the return is max(1%, 10% - 12%) = max(1%, -2%) = 1%, so total amount = 1000 + (1000 * 0.01) = 1010 Baht, which matches option d. The other options do not match the calculated values.

Yes.

Brief Explanation:

This question involves calculating the repayment amount for interest rate-linked notes with a face value of 1000 Baht. The formula is: Amount = 1000 + [1000 × max(1%, (10% - Average MLR))].

  • For option A (MLR = 5%): Calculated amount = 1000 + (1000 × max(1%, 5%)) = 1000 + 50 = 1050 Baht (not 1060, so incorrect).
  • For option B (MLR = 6%): Calculated amount = 1000 + (1000 × max(1%, 4%)) = 1000 + 40 = 1040 Baht (not 1060, so incorrect).
  • For option C (MLR = 11%): Calculated amount = 1000 + (1000 × max(1%, -1%)) = 1000 + 10 = 1010 Baht (not 1110, so incorrect).
  • For option D (MLR = 12%): Calculated amount = 1000 + (1000 × max(1%, -2%)) = 1000 + 10 = 1010 Baht (matches the option, so correct).

Thus, option D is accurate.

{"correct_answer_key":"d"}

First, the user is providing another multiple-choice question in JSON format. I need to follow the same pattern as before: provide a brief explanation, then respond in JSON with the "correct_answer_key".

The question is in Thai, and it seems to be about financial instruments, specifically interest rate-linked notes. Let me translate and understand it.

The question describes: A bond with a face value of 1000 Baht, 1-year term, pays returns annually, and at maturity, the amount received is: Face value + { Face value x [ max(1%, (10% - Average MLR)) ] }

Where MLR likely stands for Market Lending Rate or something similar.

So, the formula for the amount received at maturity is:

Amount = 1000 + {1000 x [max(1%, (10% - Average MLR))]}

Simplifying, Amount = 1000 * (1 + max(1%, (10% - Average MLR)))

More precisely: Amount = 1000 + [1000 * max(1%, (10% - Average MLR))] = 1000 * [1 + max(1%, (10% - Average MLR))]

Now, the options are:

a: If average MLR = 5%, receive 1060 Baht

b: If average MLR = 6%, receive 1060 Baht

c: If average MLR = 11%, receive 1110 Baht

d: If average MLR = 12%, receive 1010 Baht

I need to calculate for each scenario what the actual amount should be and see which one matches.

Let’s denote:

Let r = max(1%, (10% - Average MLR))

Then, Amount = 1000 + (1000 * r) = 1000 * (1 + r)

For option a: MLR average = 5%

10% - 5% = 5%

max(1%, 5%) = 5% = 0.05

So, Amount = 1000 + (1000 * 0.05) = 1000 + 50 = 1050 Baht

But option a says 1060 Baht. That's not matching. So, a is incorrect.

For option b: MLR average = 6%

10% - 6% = 4%

max(1%, 4%) = 4% = 0.04

Amount = 1000 + (1000 * 0.04) = 1000 + 40 = 1040 Baht

Option b says 1060 Baht. Not matching. So, b is incorrect.

For option c: MLR average = 11%

10% - 11% = -1%

max(1%, -1%) = 1% = 0.01

Amount = 1000 + (1000 * 0.01) = 1000 + 10 = 1010 Baht

Option c says 1110 Baht. That's not matching. I got 1010, but it says 1110. So, c is incorrect.

That can't be right. Let me double-check the formula.

The question says: จํานวนเงินทีได้รับชําระคืน = มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1% (10% - MLR เฉลีย) ] }

It's written as: max(1% (10% - MLR เฉลีย))

In the text: max(1% (10% - MLR average))

It might be max(1%, (10% - MLR average))

For c, I calculated 1010, but option says 1110. Perhaps I have the formula wrong.

Maybe it's not addition, or perhaps I need to look back.

The formula is: มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1%, (10% - MLR average)) ] }

Yes, that's what I have.

For c: MLR = 11%, 10% - 11% = -1%, max(1%, -1%) = 1%, so 1000 + (1000 * 0.01) = 1010

But option c says 1110, which is wrong.

For d: MLR average = 12%

10% - 12% = -2%

max(1%, -2%) = 1% = 0.01

Amount = 1000 + (1000 * 0.01) = 1000 + 10 = 1010 Baht

Option d says 1010 Baht. Oh! So for d, it matches.

Is that the correct one? The question is to find which option is correct, meaning which statement is true.

For d: If MLR = 12%, amount = 1010, and the option says 1010, so that's correct.

Earlier for a, b, c, they don't match.

For a: Calculated 1050, option says 1060 — incorrect

b: Calculated 1040, option says 1060 — incorrect

c: Calculated 1010, option says 1110 — incorrect

d: Calculated 1010, option says 1010 — correct

So, d is the correct answer.

Is that right? For c, I calculated 1010, but option c says 1110, which is wrong, so the statement in c is false.

Yes, so only d's statement is true.

Therefore, the correct answer key is "d".

My response should be: Brief explanation, then JSON with {"correct_answer_key":"d"}

Brief Explanation:

This question involves calculating the maturity value of an interest rate-linked note with a face value of 1,000 Baht. The formula for the amount received is:
Face Value + {Face Value × [max(1%, (10% - Average MLR))]}

  • For option A (MLR = 5%): Calculated amount = 1,000 + (1,000 × max(1%, 10% - 5%)) = 1,000 + (1,000 × 5%) = 1,050 Baht (not 1,060, so incorrect).
  • For option B (MLR = 6%): Calculated amount = 1,000 + (1,000 × max(1%, 10% - 6%)) = 1,000 + (1,000 × 4%) = 1,040 Baht (not 1,060, so incorrect).
  • For option C (MLR = 11%): Calculated amount = 1,000 + (1,000 × max(1%, 10% - 11%)) = 1,000 + (1,000 × 1%) = 1,010 Baht (not 1,110, so incorrect).
  • For option D (MLR = 12%): Calculated amount = 1,000 + (1,000 × max(1%, 10% - 12%)) = 1,000 + (1,000 × 1%) = 1,010 Baht (matches 1,010, so correct).

Thus, option D is the correct statement.

{"correct_answer_key":"d"}

Let's calculate the repayment amount based on the given formula for the interest rate-linked notes. The formula is:

Repayment Amount = Face Value + { Face Value × [ max(1%, (10% - Average MLR)) ] }

Here, the Face Value is 1000 Baht. We need to evaluate each option by plugging in the given Average MLR values and checking the resulting repayment amount.

  • Option A: Average MLR = 5%
    max(1%, (10% - 5%)) = max(1%, 5%) = 5%
    Repayment = 1000 + (1000 × 5%) = 1000 + 50 = 1050 Baht
    (Incorrect, as the option states 1060 Baht)

  • Option B: Average MLR = 6%
    max(1%, (10% - 6%)) = max(1%, 4%) = 4%
    Repayment = 1000 + (1000 × 4%) = 1000 + 40 = 1040 Baht
    (Incorrect, as the option states 1060 Baht)

  • Option C: Average MLR = 11%
    max(1%, (10% - 11%)) = max(1%, -1%) = 1%
    Repayment = 1000 + (1000 × 1%) = 1000 + 10 = 1010 Baht
    (Incorrect, as the option states 1110 Baht)

  • Option D: Average MLR = 12%
    max(1%, (10% - 12%)) = max(1%, -2%) = 1%
    Repayment = 1000 + (1000 × 1%) = 1000 + 10 = 1010 Baht
    (Correct, as the option states 1010 Baht)

Thus, the correct answer is option D.

{"correct_answer_key":"d"}

{ "correct_answer_key": "d" }

สูตรการคำนวณเงินคืน
= 1,000 + 1,000 × max(1%, 10% – MLR เฉลี่ย)

  • MLR = 5% → max(1%, 5%) = 5% → 1,000 + 1,000×0.05 = 1,050 บาท
  • MLR = 6% → max(1%, 4%) = 4% → 1,000 + 1,000×0.04 = 1,040 บาท
  • MLR = 11% → max(1%, –1%) = 1% → 1,000 + 1,000×0.01 = 1,010 บาท
  • MLR = 12% → max(1%, –2%) = 1% → 1,000 + 1,000×0.01 = 1,010 บาท

ตัวเลือก d ระบุว่า MLR = 12% จะได้รับ 1,010 บาท ซึ่งตรงกับการคำนวณข้างต้น

{"correct_answer_key":"d"}

เพื่อคำนวณจำนวนเงินที่จะได้รับชำระคืนเมื่อหุ้นกู้อนุพันธ์ครบกำหนดอายุสัญญา เราต้องใช้สูตรที่กำหนด:

จำนวนเงินที่ได้รับชำระคืน = มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ] }

ลองคำนวณสำหรับตัวเลือกแต่ละตัว:

  • สำหรับตัวเลือก a: หาก MLR เฉลี่ยเท่ากับ 5%

    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, (10% - 5%)) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, 5%) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x 5% } = 1000 + 50 = 1050 บาท
  • สำหรับตัวเลือก b: หาก MLR เฉลี่ยเท่ากับ 6%

    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, (10% - 6%)) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, 4%) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x 4% } = 1000 + 40 = 1040 บาท
  • สำหรับตัวเลือก c: หาก MLR เฉลี่ยเท่ากับ 11%

    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, (10% - 11%)) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, -1%) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x 1% } = 1000 + 10 = 1010 บาท
  • สำหรับตัวเลือก d: หาก MLR เฉลี่ยเท่ากับ 12%

    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, (10% - 12%)) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x [ max(1%, -2%) ] }
    • จำนวนเงินที่ได้รับชำระคืน = 1000 + { 1000 x 1% } = 1000 + 10 = 1010 บาท

เมื่อดูผลลัพธ์ของการคำนวณ ตัวเลือกที่แสดงจำนวนเงินที่จะได้รับชำระคืนเมื่อหุ้นกู้อนุพันธ์ครบกำหนดอายุสัญญาได้ถูกต้องคือ:

{"correct_answer_key":"a"}

To determine the correct answer, let's analyze the given condition for the payment at the end of the term:

จำนวนเงินที่ได้รับชำระคืน = มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย) ] }

Given that the face value (มูลค่าที่ตราไว้) is 1000 บาท, the formula simplifies to: = 1000 + { 1000 x [ max(1%, (10% - MLR เฉลี่ย) ] } = 1000 + { [ max(1%, (10% - MLR เฉลี่ย) ] x 1000 }

Let's examine each option by calculating the amount to be received at the end of the term based on the given MLR เฉลี่ย:

a) หาก MLR เฉลี่ย เท่ากับ 5% = 1000 + { [ max(1%, (10% - 5%) ] x 1000 } = 1000 + { [ max(1%, 5%) ] x 1000 } = 1000 + (5% x 1000) = 1000 + 50 = 1050 บาท (not 1060)

b) หาก MLR เฉลี่ย เท่ากับ 6% = 1000 + { [ max(1%, (10% - 6%) ] x 1000 } = 1000 + { [ max(1%, 4%) ] x 1000 } = 1000 + (4% x 1000) = 1000 + 40 = 1040 บาท (not 1060)

c) หาก MLR เฉลี่ย เท่ากับ 11% = 1000 + { [ max(1%, (10% - 11%) ] x 1000 } = 1000 + { [ max(1%, -1%) ] x 1000 } = 1000 + (1% x 1000) = 1000 + 10 = 1010 บาท (not 1110)

d) หาก MLR เฉลี่ย เท่ากับ 12% = 1000 + { [ max(1%, (10% - 12%) ] x 1000 } = 1000 + { [ max(1%, -2%) ] x 1000 } = 1000 + (1% x 1000) = 1000 + 10 = 1010 บาท (correct)

Thus, the correct statement is d) หาก MLR เฉลี่ย เท่ากับ 12% จะได้รับเงินสดคืน 1010 บาท.

{"correct_answer_key":"d"}

To solve this, let's break down the information given and analyze the options.

The interest rate-linked note pays out based on a formula that seems to involve the Maximum of (1%, (10% - MLR average)). Let's assume MLR stands for a reference interest rate or a similar benchmark.

Given:

  • Face value or principal = 1000 บาท
  • The payoff structure seems to be: Payoff = 1000 + max(1%, (10% - MLR average)))

We need to calculate based on the options provided and see which one matches.

If MLR average = 5%

  • Payoff = 1000 + max(1%, (10 - 5)) = 1000 + max(1%, 5%) = 1000 + 5% = 1000 + 50 = 1050 บาท

If MLR average = 6%

  • Payoff = 1000 + max(1%, (10 - 6)) = 1000 + max(1%, 4%) = 1000 + 4% of 1000 = 1000 + 40 = 1040 บาท

If MLR average = 11%

  • Payoff = 1000 + max(1%, (10 - 11)) = 1000 + max(1%, -1%) = 1000 + 1% = 1010 บาท

If MLR average = 12%

  • Payoff = 1000 + max(1%, (10 - 12)) = 1000 + max(1%, -2%) = 1000 + 1% = 1010 บาท

If MLR average = 4%

  • Payoff = 1000 + max(1%, (10 - 4)) = 1000 + max(1%, 6%) = 1000 + 6% = 1060 บาท

If MLR average = 3%

  • Payoff = 1000 + max(1%, (10 - 3)) = 1000 + max(1%, 7%) = 1000 + 7% = 1070 บาท but that seems not to match any option directly.

If MLR average = 8%

  • Payoff = 1000 + max(1%, (10 - 8)) = 1000 + max(1%, 2%) = 1000 + 2% = 1020 บาท but that seems not to match any option directly.

If MLR average = 9%

  • Payoff = 1000 + max(1%, (10 - 9)) = 1000 + max(1%, 1%) = 1000 + 1% = 1010 บาท but that seems to align with option d if we assume a direct calculation or specific scenario.

If MLR average = 10%

  • Payoff = 1000 + max(1%, (10 - 10)) = 1000 + max(1%, 0) = 1000 + 1% = 1010 บาท which seems to align with "d".

If MLR average = 2%

  • This seems not directly provided but based on calculations:
  • Payoff = 1000 + max(1%, (10-2)) = 1000 + 8% = 1080 but that is not listed.

If MLR average = 7%

  • Payoff = 1000 + max(1%, (10 - 7)) = 1000 + 3% = 1030

If MLR average = 9%

  • Payoff = 1000 + max(1%, (10-9)) = 1000 + 1% = 1010 บาท

The correct calculation based on given choices seems to relate to option "d" if MLR = 12%, implying a 10 - 12 = -2%, but since that is a negative and 1% is the floor, it matches 1010.

So,

{"correct_answer_key":"d"}

To determine the correct answer, we need to evaluate the given formula for the repayment amount based on the Minimum Lending Rate (MLR). The formula is:

[ \text{Repayment Amount} = \text{Principal} + \left( \text{Principal} \times \max \left( 1%, \left( 10% - \text{MLR} \right) \right) \right) ]

Let's evaluate each option:

  1. Option A: If MLR = 5% [ \text{Repayment Amount} = 1000 + \left( 1000 \times \max \left( 1%, \left( 10% - 5% \right) \right) \right) = 1000 + \left( 1000 \times 5% \right) = 1000 + 50 = 1050 ] This is incorrect.

  2. Option B: If MLR = 6% [ \text{Repayment Amount} = 1000 + \left( 1000 \times \max \left( 1%, \left( 10% - 6% \right) \right) \right) = 1000 + \left( 1000 \times 4% \right) = 1000 + 40 = 1040 ] This is incorrect.

  3. Option C: If MLR = 11% [ \text{Repayment Amount} = 1000 + \left( 1000 \times \max \left( 1%, \left( 10% - 11% \right) \right) \right) = 1000 + \left( 1000 \times 1% \right) = 1000 + 10 = 1010 ] This is incorrect.

  4. Option D: If MLR = 12% [ \text{Repayment Amount} = 1000 + \left( 1000 \times \max \left( 1%, \left( 10% - 12% \right) \right) \right) = 1000 + \left( 1000 \times 1% \right) = 1000 + 10 = 1010 ] This is correct.

Therefore, the correct answer is option D.

{"correct_answer_key":"d"}

To determine the correct answer, we need to calculate the payout based on the given formula and the provided MLR (Maximum Lending Rate) values.

  1. Formula: [ \text{Payout} = \text{Face Value} + \left( \text{Face Value} \times \max\left(1% \times (10% - \text{MLR}_{\text{เฉลีย}})\right) \right) ]

  2. Given:

    • Face Value = 1000 THB
    • MLR values to check: 5%, 6%, 11%, 12%
  3. Calculations:

    • For MLR = 5%: [ \max\left(1% \times (10% - 5%)\right) = \max\left(1% \times 5%\right) = \max\left(0.01 \times 0.05\right) = \max\left(0.0005\right) = 0.0005 ] [ \text{Payout} = 1000 + \left(1000 \times 0.0005\right) = 1000 + 0.5 = 1000.5 \text{ THB} ]

    • For MLR = 6%: [ \max\left(1% \times (10% - 6%)\right) = \max\left(1% \times 4%\right) = \max\left(0.01 \times 0.04\right) = \max\left(0.0004\right) = 0.0004 ] [ \text{Payout} = 1000 + \left(1000 \times 0.0004\right) = 1000 + 0.4 = 1000.4 \text{ THB} ]

    • For MLR = 11%: [ \max\left(1% \times (10% - 11%)\right) = \max\left(1% \times (-1%)\right) = \max\left(0.01 \times (-0.01)\right) = \max\left(-0.0001\right) = 0 ] [ \text{Payout} = 1000 + \left(1000 \times 0\right) = 1000 + 0 = 1000 \text{ THB} ]

    • For MLR = 12%: [ \max\left(1% \times (10% - 12%)\right) = \max\left(1% \times (-2%)\right) = \max\left(0.01 \times (-0.02)\right) = \max\left(-0.0002\right) = 0 ] [ \text{Payout} = 1000 + \left(1000 \times 0\right) = 1000 + 0 = 1000 \text{ THB} ]

  4. Conclusion:

    • The only option that matches the calculated payout is option (b) for MLR = 6% with a payout of 1060 THB.
{"correct_answer_key":"b"}

To determine the correct answer, we need to calculate the amount of money returned when the Maturity Loan Rate (MLR) is given. The formula provided is:

[ \text{Returned Amount} = \text{Face Value} + (\text{Face Value} \times \max(1%, (10% - \text{MLR}_{\text{effective}}))) ]

The face value is 1000 baht.

Let's calculate for each option:

Option a: MLR = 5%

[ \text{Returned Amount} = 1000 + (1000 \times \max(1%, (10% - 5%))) ] [ \text{Returned Amount} = 1000 + (1000 \times \max(1%, 5%)) ] [ \text{Returned Amount} = 1000 + (1000 \times 1%) ] [ \text{Returned Amount} = 1000 + 10 = 1010 \text{ baht} ]

Option b: MLR = 6%

[ \text{Returned Amount} = 1000 + (1000 \times \max(1%, (10% - 6%))) ] [ \text{Returned Amount} = 1000 + (1000 \times \max(1%, 4%)) ] [ \text{Returned Amount} = 1000 + (1000 \times 1%) ] [ \text{Returned Amount} = 1000 + 10 = 1010 \text{ baht} ]

Option c: MLR = 11%

[ \text{Returned Amount} = 1000 + (1000 \times \max(1%, (10% - 11%))) ] [ \text{Returned Amount} = 1000 + (1000 \times \max(1%, -1%)) ] [ \text{Returned Amount} = 1000 + (1000 \times 1%) ] [ \text{Returned Amount} = 1000 + 10 = 1010 \text{ baht} ]

Option d: MLR = 12%

[ \text{Returned Amount} = 1000 + (1000 \times \max(1%, (10% - 12%))) ] [ \text{Returned Amount} = 1000 + (1000 \times \max(1%, -2%)) ] [ \text{Returned Amount} = 1000 + (1000 \times 1%) ] [ \text{Returned Amount} = 1000 + 10 = 1010 \text{ baht} ]

None of the options match the expected returned amount of 1060 baht. However, if we consider the calculation for MLR = 5% and MLR = 6%, both return 1010 baht.

Given the problem statement, it seems there might be a mistake in the options provided. But based on the calculations, the closest correct answer would be:

{"correct_answer_key":"a"}

To determine the correct answer, we need to evaluate the formula provided:

จํานวนเงินทีได้รับชําระคืน = มูลค่าทีตราไว้ + { มูลค่าทีตราไว้ x [ max(1% (10% - MLR เฉลีย) ] }

Given that the face value is 1000 THB, let's evaluate each option:

  • For option a: If MLR เฉลีย is 5%, then max(1%, (10% - 5%)) = max(1%, 5%) = 5%. Therefore, the return would be 1000 + (1000 x 0.05) = 1050 THB, not 1060 THB.
  • For option b: If MLR เฉลีย is 6%, then max(1%, (10% - 6%)) = max(1%, 4%) = 4%. Therefore, the return would be 1000 + (1000 x 0.04) = 1040 THB, not 1060 THB.
  • For option c: If MLR เฉลีย is 11%, then max(1%, (10% - 11%)) = max(1%, -1%) = 1%. Therefore, the return would be 1000 + (1000 x 0.01) = 1010 THB, not 1110 THB.
  • For option d: If MLR เฉลีย is 12%, then max(1%, (10% - 12%)) = max(1%, -2%) = 1%. Therefore, the return would be 1000 + (1000 x 0.01) = 1010 THB, which matches the option.

Thus, the correct answer is option d.

{"correct_answer_key":"d"}

คำอธิบายโดยย่อ:
การคำนวณจำนวนเงินที่จะได้รับคืนเมื่อครบกำหนดอายุสัญญา คือ
มูลค่าที่ตราไว้ + (มูลค่าที่ตราไว้ × max(1%, 10% - MLR เฉลี่ย))

• หาก MLR เฉลี่ย = 12% ⇒ 10% - 12% = -2%
เมื่อเปรียบเทียบกับ 1% จะได้ max(1%, -2%) = 1%
ดังนั้น จำนวนเงินที่จะได้รับคืน = 1000 + (1000 × 1%) = 1010 บาท

ข้อ d) จึงเป็นคำตอบที่ถูกต้อง

{"correct_answer_key":"d"}

เงื่อนไขการจ่ายคืน = 1 000 บาท + (1 000 บาท × max[ 1 %, 10 % − MLR เฉลี่ย ])

คำนวณทีละกรณี
• MLR เฉลี่ย 5 % → 10 % − 5 % = 5 % > 1 % → ดอกเบี้ย = 1 000×5 %= 50 บาท → รับคืน 1 050 บาท (ไม่ใช่ 1 060)
• MLR เฉลี่ย 6 % → 10 % − 6 % = 4 % > 1 % → ดอกเบี้ย 40 บาท → รับคืน 1 040 บาท (ไม่ใช่ 1 060)
• MLR เฉลี่ย 11 % → 10 % − 11 % = −1 % < 1 % → ดอกเบี้ย = 1 000×1 % = 10 บาท → รับคืน 1 010 บาท (ไม่ใช่ 1 110)
• MLR เฉลี่ย 12 % → 10 % − 12 % = −2 % < 1 % → ดอกเบี้ย 10 บาท → รับคืน 1 010 บาท (ตรงกับตัวเลือก d)

{"correct_answer_key":"d"}

เงื่อนไขการชำระคืน = 1 000 + 1 000 × max(1%, 10% – MLR)

ตรวจแต่ละตัวเลือก
a) MLR = 5% ⇒ 10% – 5% = 5% (> 1%) ⇒ รับ 1 000 + 1 000 × 5% = 1 050 (ไม่ใช่ 1 060)
b) MLR = 6% ⇒ 10% – 6% = 4% ⇒ รับ 1 040 (ไม่ใช่ 1 060)
c) MLR = 11% ⇒ 10% – 11% = –1% (< 1%) ⇒ ใช้ 1% ⇒ รับ 1 010 (ไม่ใช่ 1 110)
d) MLR = 12% ⇒ 10% – 12% = –2% (< 1%) ⇒ ใช้ 1% ⇒ รับ 1 010 (ตรงกับที่ระบุ)

จึงถูกต้องเฉพาะตัวเลือก d.

{"correct_answer_key":"d"}

สูตรการชำระคืนตอนครบกำหนด
Amount = FV + FV × max(1%, 10% − MLR)

หน้าตั๋ว = 1,000 บาท

ตรวจแต่ละตัวเลือก
a) MLR = 5% 10%−5%=5% max(1%,5%)=5% รับ = 1,000+1,000×0.05 = 1,050 (ไม่ใช่ 1,060)
b) MLR = 6% 10%−6%=4% max=4% รับ = 1,000+40 = 1,040 (ไม่ใช่ 1,060)
c) MLR = 11% 10%−11%=−1% max=1% รับ = 1,000+10 = 1,010 (ไม่ใช่ 1,110)
d) MLR = 12% 10%−12%=−2% max=1% รับ = 1,000+10 = 1,010 (ถูกต้อง)

{"correct_answer_key":"d"}

The note’s redemption value is calculated as:   Redemption Value = Face Value + { Face Value × [max(1%, (10% – Average MLR))] }

For each option: • Option a: If MLR = 5%, then (10% – 5%) = 5% and max(1%, 5%) = 5%. Interest = 1000 × 5% = 50 baht, so total = 1050 baht (≠ 1060 baht). • Option b: If MLR = 6%, then (10% – 6%) = 4% and max(1%, 4%) = 4%. Interest = 1000 × 4% = 40 baht, so total = 1040 baht (≠ 1060 baht). • Option c: If MLR = 11%, then (10% – 11%) = –1% and max(1%, –1%) = 1%. Interest = 1000 × 1% = 10 baht, so total = 1010 baht (≠ 1110 baht). • Option d: If MLR = 12%, then (10% – 12%) = –2% and max(1%, –2%) = 1%. Interest = 1000 × 1% = 10 baht, so total = 1010 baht, which matches.

Thus, the correct answer is option d.

{"correct_answer_key": "d"}

สำหรับหุ้นกู้อนุพันธ์นี้ จำนวนเงินที่จะได้รับคืนเมือครบกำหนดจะคำนวณจากสูตร

  จํานวนเงินที่ได้รับคืน = มูลค่าที่ตราไว้ + (มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ])

ให้พิจารณาตัวเลือก d:   ถ้า MLR เฉลี่ย = 12%  ⇒ (10% - 12%) = -2%   max(1%, -2%) = 1%  ⇒ ชำระคืน = 1000 + (1000 x 1%) = 1000 + 10 = 1010 บาท

ซึ่งตรงกับข้อความในตัวเลือก d

{"correct_answer_key": "d"}

The redemption amount is calculated by adding the face value (1000 baht) to the interest, which is computed as 1000 × max(1%, (10% - average MLR)). For example, if the average MLR is 12%, then (10% - 12%) equals -2%, which is less than 1%. Therefore, the maximum is 1%, and the interest is 1000 × 1% = 10 baht. Adding this to the face value gives 1000 + 10 = 1010 baht, which matches option D.

{"correct_answer_key": "d"}

คำอธิบาย: ตามสูตร ชำระคืน = 1,000 + 1,000 × max(1%, 10% − MLRเฉลี่ย)
เมื่อ MLRเฉลี่ย = 12% → 10% − 12% = −2% < 1% จึงใช้ 1%
ดอกเบี้ย = 1,000 × 1% = 10 → ได้รับคืน 1,000 + 10 = 1,010 บาท

{"correct_answer_key":"d"}

คำอธิบายสั้น ๆ
จำนวนเงินคืน = 1,000 + 1,000 × max(1%, (10% – MLR เฉลี่ย))
เมื่อ MLR เฉลี่ย = 12% ⇒ (10%–12%) = –2% < 1% จึงใช้ 1%
เงินคืน = 1,000 + 1,000×1% = 1,010 บาท

{"correct_answer_key":"d"}

คำตอบข้อ d ถูกต้อง
เมื่อคำนวณจะได้
ดอกเบี้ย = 1,000 x max(1%, 10% − MLR)
ถ้า MLR = 12% → 10% − 12% = −2% → max(1%, −2%) = 1%
ดังนั้น ได้คืน = 1,000 + (1,000 x 1%) = 1,010 บาท

{"correct_answer_key":"d"}

To determine the correct amount to be received at maturity, we need to evaluate the formula given:

[ \text{Amount received} = \text{Principal} + \left( \text{Principal} \times \max\left(1%, \left(10% - \text{MLR}\right)\right) \right) ]

The principal is 1000 บาท. Let's evaluate each option:

  • Option A: MLR = 5% [ \max(1%, (10% - 5%)) = \max(1%, 5%) = 5% ] [ \text{Amount received} = 1000 + (1000 \times 5%) = 1000 + 50 = 1050 \text{ บาท} ] This does not match 1060 บาท.

  • Option B: MLR = 6% [ \max(1%, (10% - 6%)) = \max(1%, 4%) = 4% ] [ \text{Amount received} = 1000 + (1000 \times 4%) = 1000 + 40 = 1040 \text{ บาท} ] This does not match 1060 บาท.

  • Option C: MLR = 11% [ \max(1%, (10% - 11%)) = \max(1%, -1%) = 1% ] [ \text{Amount received} = 1000 + (1000 \times 1%) = 1000 + 10 = 1010 \text{ บาท} ] This does not match 1110 บาท.

  • Option D: MLR = 12% [ \max(1%, (10% - 12%)) = \max(1%, -2%) = 1% ] [ \text{Amount received} = 1000 + (1000 \times 1%) = 1000 + 10 = 1010 \text{ บาท} ] This matches the amount stated in the option.

Therefore, the correct answer is:

{"correct_answer_key":"d"}

หุ้นกู้อนุพันธ์ในตัวอย่างนี้จ่ายผลตอบแทนตามเงื่อนไขที่ระบุไว้ โดยมีมูลค่าที่ตราไว้เท่ากับ 1,000 บาท และผลตอบแทนคำนวณจากสูตร:

$$ \text{จำนวนเงินที่ได้รับชำระคืน} = \text{มูลค่าที่ตราไว้} + {\text{มูลค่าที่ตราไว้} \times [\text{max}(1%, (10% - \text{MLR เฉลี่ย}))]} $$

วิเคราะห์แต่ละตัวเลือก:

  1. ตัวเลือก A: หาก MLR เฉลี่ย = 5%

    • คำนวณ: $ \text{max}(1%, (10% - 5%)) = \text{max}(1%, 5%) = 5% $
    • ผลตอบแทน: $ 1,000 + (1,000 \times 5%) = 1,000 + 50 = 1,050 $ บาท
    • ไม่ถูกต้อง เพราะจำนวนเงินที่ได้รับคืนควรเป็น 1,050 บาท ไม่ใช่ 1,060 บาท
  2. ตัวเลือก B: หาก MLR เฉลี่ย = 6%

    • คำนวณ: $ \text{max}(1%, (10% - 6%)) = \text{max}(1%, 4%) = 4% $
    • ผลตอบแทน: $ 1,000 + (1,000 \times 4%) = 1,000 + 40 = 1,040 $ บาท
    • ไม่ถูกต้อง เพราะจำนวนเงินที่ได้รับคืนควรเป็น 1,040 บาท ไม่ใช่ 1,060 บาท
  3. ตัวเลือก C: หาก MLR เฉลี่ย = 11%

    • คำนวณ: $ \text{max}(1%, (10% - 11%)) = \text{max}(1%, -1%) = 1% $
    • ผลตอบแทน: $ 1,000 + (1,000 \times 1%) = 1,000 + 10 = 1,010 $ บาท
    • ไม่ถูกต้อง เพราะจำนวนเงินที่ได้รับคืนควรเป็น 1,010 บาท ไม่ใช่ 1,110 บาท
  4. ตัวเลือก D: หาก MLR เฉลี่ย = 12%

    • คำนวณ: $ \text{max}(1%, (10% - 12%)) = \text{max}(1%, -2%) = 1% $
    • ผลตอบแทน: $ 1,000 + (1,000 \times 1%) = 1,000 + 10 = 1,010 $ บาท
    • ถูกต้อง เพราะจำนวนเงินที่ได้รับคืนคือ 1,010 บาท

สรุป:

ตัวเลือกที่ถูกต้องคือ D

{"correct_answer_key":"d"}

หุ้นกู้อนุพันธ์นี้มีสูตรคำนวณเงินคืนเมื่อครบกำหนดเป็น:
มูลค่าที่ตราไว้ + {มูลค่าที่ตราไว้ × [max(1%, (10% - MLR เฉลี่ย))]}.

  • หาก MLR เฉลี่ย ≥ 10%: (10% - MLR เฉลี่ย) จะ ≤ 0% ดังนั้น max(1%, ค่าติดลบ) = 1%
  • หาก MLR เฉลี่ย < 10%: (10% - MLR เฉลี่ย) จะ > 0% และมากกว่า 1% (ยกเว้น MLR เฉลี่ย = 9% จะได้ 1%)

ตรวจสอบตัวเลือก:

  • a. MLR 5% → 10% - 5% = 5%
    เงินคืน = 1,000 + (1,000 × 5%) = 1,050 บาท (ไม่ใช่ 1,060 บาท) ❌
  • b. MLR 6% → 10% - 6% = 4%
    เงินคืน = 1,000 + (1,000 × 4%) = 1,040 บาท (ไม่ใช่ 1,060 บาท) ❌
  • c. MLR 11% → 10% - 11% = -1%
    max(1%, -1%) = 1% → เงินคืน = 1,000 + (1,000 × 1%) = 1,010 บาท (ไม่ใช่ 1,110 บาท) ❌
  • d. MLR 12% → 10% - 12% = -2%
    max(1%, -2%) = 1% → เงินคืน = 1,000 + (1,000 × 1%) = 1,010 บาท

ดังนั้น ตัวเลือกที่ถูกต้องคือ d

{"correct_answer_key":"d"}

{"correct_answer_key":"d"}

{"correct_answer_key":"d"}

Okay, let's tackle this problem step by step. The question is about a derivative bond that pays returns linked to market interest rates. The bond has a face value of 1000 THB, a 1-year term, and pays annually. The repayment at maturity is calculated as the face value plus [face value multiplied by max(1%, (10% - average MLR))]. We need to determine which of the options correctly shows the repayment amount based on different MLR averages.

First, let me parse the formula given. The repayment formula is:

Repayment = Face Value + (Face Value × max(1%, (10% - Average MLR)))

So, the key here is understanding how the max function works here. The max function takes two values: 1% and (10% - Average MLR). The result will be whichever is higher between these two.

Let me go through each option one by one.

Option a: If average MLR is 5%, repayment is 1060 THB.

Let's compute the rate first. 10% - 5% = 5%. Then compare that to 1%. Since 5% is higher than 1%, the max is 5%. So the repayment would be 1000 + (1000 × 5%) = 1000 + 50 = 1050. But the option says 1060, which is 60 more. So this is incorrect. The correct amount should be 1050, so option a is wrong.

Option b: If average MLR is 6%, repayment is 1060.

Calculating again: 10% -6% =4%. Max(1%,4%) is 4%. So 1000 + (1000×4%) = 1040. But the option says 1060. So that's not right either. Wait, maybe I made a mistake here. Wait, 4% of 1000 is 40, so total 1040. So option b is incorrect.

Option c: If average MLR is 11%, repayment is 1110.

Compute 10% -11% = -1%. Now, compare that to 1%. The max between -1% and 1% is 1%. So the repayment is 1000 + (1000×1%) = 1010. But the option says 1110, which is way higher. So that's wrong. Wait, maybe I miscalculated. Wait, 10% minus MLR (11%) gives -1%, so the max is 1%, so 1% of 1000 is 10, so total 1010. So option c is incorrect.

Option d: If average MLR is 12%, repayment is 1010.

Calculating: 10% -12% = -2%. Max between -2% and 1% is 1%. So again, 1000 +10 =1010. The option says 1010, so that's correct. Wait, but let me check again. The question is asking which option is correct. So option d says when MLR is 12%, repayment is 1010, which matches our calculation.

Wait, but let me check all options again to be sure.

Wait, maybe I made a mistake in the formula. The problem states: "max(1% (10% - MLR average)". Wait, the original problem's formula might have a typo in the user's input? Let me check the original question again.

The user wrote: "max(1% (10% - MLR เฉลีย) ]". The Thai part might have a missing operator. The original formula in the problem is written as:

"max(1% (10% - MLR average)"

Possibly, it's supposed to be max(1%, (10% - MLR average)), which is how I interpreted it. So the calculation is correct as above.

So, the correct answer is option d. Let me confirm each option again:

Option a: MLR 5% → 10% -5% =5% → max(1%,5%)=5% → 1000*5% =50 → total 1050. So a is wrong.

Option b: MLR6% → 10-6=4% → max(1%,4%)=4% → 40 → total 1040. So b is wrong.

Option c: MLR11% → 10-11= -1% → max(1%, -1%)=1% → 10 → total 1010. But option c says 1110, which is wrong.

Option d: MLR12% → 10-12= -2% → max(1%, -2%)=1% → 10 → total 1010. So d is correct.

Therefore, the correct answer is option d.

The bond's repayment formula is:
Repayment = Face Value + (Face Value × max(1%, (10% - Average MLR)))

Analysis of Each Option:

  • Option a (MLR = 5%):
    Calculation: max(1%, 10% - 5%) = max(1%, 5%) = 5%
    Repayment = 1000 + (1000 × 5%) = 1050 THB (not 1060). Incorrect.

  • Option b (MLR = 6%):
    Calculation: max(1%, 10% - 6%) = max(1%, 4%) = 4%
    Repayment = 1000 + (1000 × 4%) = 1040 THB (not 1060). Incorrect.

  • Option c (MLR = 11%):
    Calculation: max(1%, 10% - 11%) = max(1%, -1%) = 1%
    Repayment = 1000 + (1000 × 1%) = 1010 THB (not 1110). Incorrect.

  • Option d (MLR = 12%):
    Calculation: max(1%, 10% - 12%) = max(1%, -2%) = 1%
    Repayment = 1000 + (1000 × 1%) = 1010 THB (matches the option). Correct.

{"correct_answer_key":"d"}

เพื่อหาจำนวนเงินที่จะได้รับชำระคืนเมื่อหุ้นกู้อนุพันธ์ครบกำหนดอายุสัญญา เราต้องใช้สูตรที่กำหนด:

จำนวนเงินที่ได้รับชำระคืน = มูลค่าที่ตราไว้ + { มูลค่าที่ตราไว้ x [ max(1%, (10% - MLR เฉลี่ย)) ] }

เราจะคำนวณสำหรับแต่ละตัวเลือก:

  1. หาก MLR เฉลี่ยเท่ากับ 5%: max(1%, (10% - 5%)) = max(1%, 5%) = 5% จำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 x 5%) = 1000 + 50 = 1050 บาท

  2. หาก MLR เฉลี่ยเท่ากับ 6%: max(1%, (10% - 6%)) = max(1%, 4%) = 4% จำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 x 4%) = 1000 + 40 = 1040 บาท

  3. หาก MLR เฉลี่ยเท่ากับ 11%: max(1%, (10% - 11%)) = max(1%, -1%) = 1% จำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 x 1%) = 1000 + 10 = 1010 บาท

  4. หาก MLR เฉลี่ยเท่ากับ 12%: max(1%, (10% - 12%)) = max(1%, -2%) = 1% จำนวนเงินที่ได้รับชำระคืน = 1000 + (1000 x 1%) = 1000 + 10 = 1010 บาท

ดังนั้น ตัวเลือกที่แสดงจำนวนเงินที่จะได้รับชำระคืนได้ถูกต้องคือ:

{"correct_answer_key":"d"}

Alright! Let's tackle this problem step by step. The user provided a multiple-choice question in Thai about interest rate-linked notes. The question involves calculating the amount received upon maturity of such notes based on the MLR (Minimum Lending Rate) average.

First, I need to understand the structure of the payment. The formula given is: Amount Received = Face Value + {Face Value × [max(1%, (10% - MLR average))]}. The face value is 1000 THB, and the note has a 1-year term with annual payment.

I should break down each option to see which one correctly applies the formula. Let's go through each option one by one.

Option A: If MLR average is 5%, then (10% - 5%) equals 5%. The max between 1% and 5% is 5%. So, the interest would be 1000 × 5% = 50 THB. Total amount = 1000 + 50 = 1050 THB. However, option A says 1060, which doesn't match. So, A is incorrect.

Option B: MLR average is 6%. (10% - 6%) = 4%. Max(1%, 4%) is 4%. Interest = 1000 × 4% = 40 THB. Total amount = 1040 THB. Option B claims 1060, which is wrong. So, B is out.

Option C: MLR average is 11%. (10% - 11%) = -1%. Since we take the max with 1%, it becomes 1%. Interest = 1000 × 1% = 10 THB. Total amount = 1010 THB. But option C states 1110, which is incorrect. So, C is not right.

Option D: MLR average is 12%. (10% - 12%) = -2%. Again, max with 1% is 1%. Interest = 1000 × 1% = 10 THB. Total amount = 1010 THB. Option D says 1010, which matches our calculation. Therefore, D is the correct answer.

{
  "correct_answer_key": "d"
}